
1
RobMoSys Review: WP2
Feb. 20, 2018, Luxembourg

Modelling Motion, Perception and World Model Stacks

Or, how to apply the RobMoSys models to hard realtime too?

Herman Bruyninckx, KU Leuven – TU Eindhoven

16 October 2018, MODELS 2018, Kopenhagen

https://robmosys.eu
https://discourse.robmosys.eu

1

Examples of simple realtime “Activities”

All of these “Activities” can be done with 95% the same modelling patterns/policies/best

practices as for “Components”!

0:00 / 3:54:51 0:00 / 1:22

0:00 / 5:03 0:00 / 1:27

2

“Realtime Activities”: often library/API-centred
“Port”-based over “API”-based

Ports decouple:

I use a port when I need data

the system architecture satisfies the
constraints on freshness of data at every
port

APIs couple:

I call a function when I need data

I am responsible for satisfying the
constraints

Ports:

Port fan-in/fan-out hell
(can be overcome by system architecture)

APIs:

API explosion hell

yet, still most popular choice for in-
component software…

•

•

•

•

• •

•

3

Block-Port-Connector and Information Architectures

Block: hides functionalities

Port: view on part of the data processed in a Block's functionalities

Connector: models ideal constraint that data in connected Ports is the same

Information Architecture:

major decision: what Ports and Connectors not to provide

the place to model/apply policies on the interaction dependencies between Ports and their Connectors

Insight:

the same models/patterns/best practices apply to “components” as well as to “functions”

also (most) of the policies

•

•

•

•

4

Motion stack = coupling of control, perception
and world modelling

Cartesian space, over horizon

Cartesian space, instantaneous

Joint space

Transmission

Actuator

Battery/Power

Cartesian
point

trajectory

joint
limits

Cartesian link
trajectory

rigid connection
to environment

contact with
environment

centre of
gravity
trajectory

soft Cartesian
point trajectory

sensor
space

joint stiffness
and damping

soft interlink
interaction

This presentation focuses on only the joint space ↔ Cartesian space levels.

⇒ robot is largest part of World Model.

•

•

•

•

•

•

5

Motion stack — The meta model

world
model

(past,
actual,

desired,
possible,

...)

plan
(discrete control)

control
(continuous)

perception
(continuous)

Task

resources

capabilities

monitoring
(discrete perception)

from
world model

to
desired world

from
actual world

to
world model

da
ta

ev
en

t

qu
er

y

da
ta

ev
en

t

qu
er

y

Information architecture: “arrows” = the
Ports that must be Connected, with a
decision of Policy

Insigths of information architect:

the core kinematics & dynamics solver
function

which Ports to couple

which Connector dependencies to
configure

•

•

•

6

The core Kin&Dyn solver function

A X = b
N

T

NN

A X = b
T

000

A X = b
T

N-1N-1N-1

2nd inward sweep:
Inertia, Bias Force,
Acceleration Energy

3rd outward sweep:
Constraint Force,
Acceleration Twist

1st outward sweep:
Poses, Twists

A X = b
T

N+1N+1N+1

Three “sweeps” to produce/consume all Ports:

Outward 1: positions, velocities, accelerations
(+ which Ports must be imported/exported!)

Inward: forces, inertias, constraints

Outward 2: joint torques

Physical state of kinematic chain: computed in Outward 1 and Inward
 → no policies available: physics is what physics is!
Task state: computed in Outward 2:
 → lots of policies possible!

•

•

•

7

The core Kin&Dyn solver function (2)
Third “sweep” policies:

saturation detection

output scaling

priorities or weighing

joint limits

Model Predictive Control

estimation & identification

compensate friction/elasticity

…

Note: no Jacobians needed!

•

•

•

•

•

•

•

•

8

From Information Architecture to Software Architecture
1. (Real-time) process pattern

hardware

"main()" thread
(mediator)

shared memory
buffers

realtime
thread

async I/O
thread

asynchronous
I/O channels

synchronous
I/O channel(s)

async I/O
thread
...

soft realtime
"task" thread

communication to
other task processes Policies:

buffering: what? communication patterns?
garbage collection?…

wait-free streams!?
(not available for components!)

first/second “sweeps” in hard or soft realtime

add monitoring/ heartbeat

…

This Activity can (but need not) be a Component.

•

•

•

•

•

9

2. Event loop(s)

when triggered // by operating system, which deals with all asynchronous side effects.

do { // the control flow structure of the event loop.

communicate() // get all "messages" with events & data, filled in by other asynchronous activities.

coordinate() // handle the events in these messages, and decide which ones to react to.

configure() // some events imply reconfiguration of computations.

compute() // execute your (serialized set of) synchronous algorithms,

 // which in themselves are side effect-free computations.

coordinate() // the computations above can generate events that

 // imply reconfiguration of this event loop.

communicate() // the computations above can generate events & data that

 // other asynchronous activities must know about.

sleep() // until the shortest deadline

 }

The loop's schedule(s) are only difference with component approach
but, they can use the same dependency model

10

3. Life Cycle State Machine(s)

creating

Life Cycle State Machine

config-
uring

resources

configuring
capabilities

running

pausingdeleting

ready
deploying active

One LCSM per activity. Including the Activity to coordinate Activities.

More than one LCSM possible per event loop

11

From Software Architecture to Hardware Architecture

Deployment on multi-core CPU

Front side

Back side

Similar information architecture of Block-
Port-Connector compositions between
data storage, data fetching, and CPU
computations.

→ new policies may have to be configured
(introduced…) for this level of deployment.

Very similar considerations apply when deploying to physical communication infrastructure,
e.g., EtherCat, Sercos, UART,…

12

Medium-term RobMoSys results
models for realtime motion stack
→ drafts for standardization

models to configure which “solver” Ports one needs at component level

compositions with realtime world model and perception

reference implementations

deployment via modelling of configuration of the reference implementation

(You can contribute to this, via a RobMoSys ITP Grant!)

•

•

•

•

•

13

Thank you for your attention.

14

