Model-Driven Robot Software Engineering:

From ROS-specific coding to framework-agnostic modeling

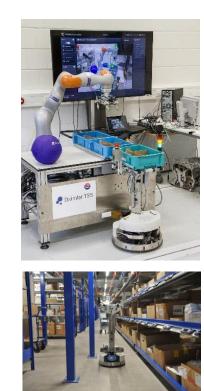
- Composable Models and Software for Robotics Systems
- Towards an EU Digital Industrial Platform for Robotics

Tutorial

https://robmosys.eu https://robmosys.eu/wiki/open-call-2 https://discourse.robmosys.eu https://robmosys.eu/wiki

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 732410.

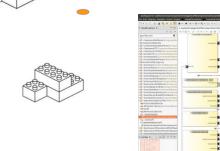
Schedule

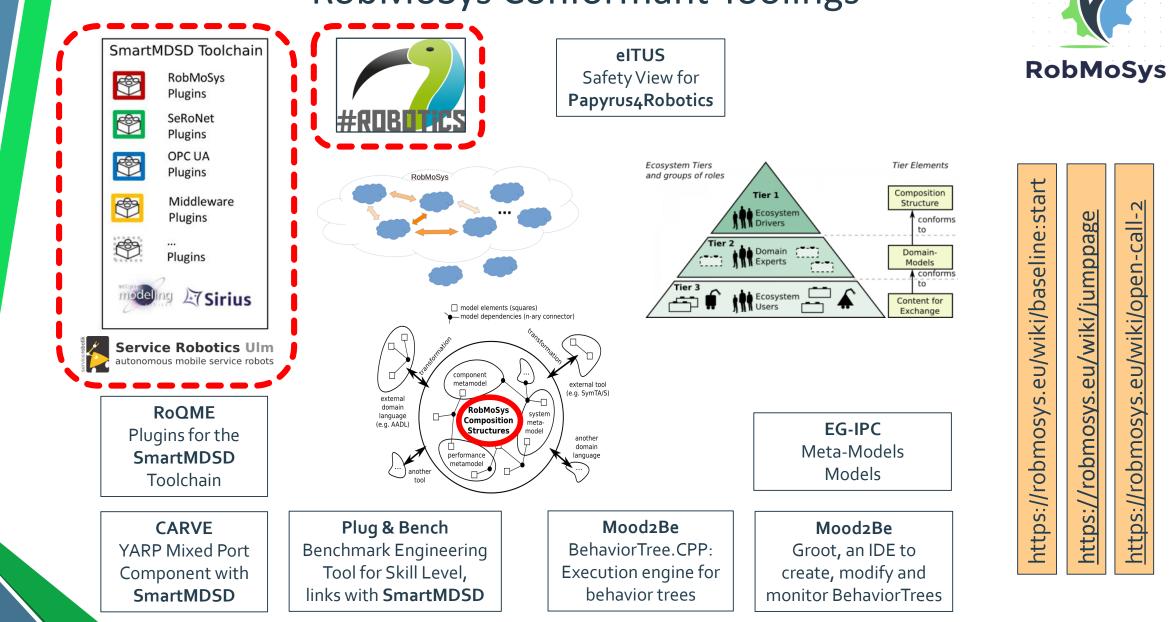


09:00 - 09:20	Towards an Open and Industry-Grade European Robotics Software Ecosystem Christian Schlegel, Technische Hochschule Ulm	Rol
09:20 - 10:00	Interactive Tool Demo: Open Source Eclipse-based Tooling for System Composition: Piecing together software components to pilot applications Alex Lotz, Technische Hochschule Ulm	
10:00 – 10:45	Interactive Tool Demo: Open Source Eclipse-based Tooling for Component Builders: Middleware-agnostic robotics software components Alex Lotz, Technische Hochschule Ulm	
10:45 – 11:15	Coffee Break	
11:15 – 11:55	Interactive Tool Demo: Safety-analysis by Model-Driven Tooling Selma Kchir, CEA List	
11:55 – 12:35	Interactive Tool Demo: Stepwise Migration to Model-Driven Development: Linking Legacy Systems via the Mixed-Port Component, Linking ROS-Systems, OPC UA Systems Alex Lotz, Technische Hochschule Ulm	s, etc.
12:35 – 12:55	The Role of Higher-order Models in Robotics and its Reasoning Challenges Herman Bruyninckx, KU Leuven	
12:55 – 13:00	Wrap Up: Summary of what to find where, how to get involved etc. Christian Schlegel, Technische Hochschule Ulm	

From ROS-specific coding to framework-agnostic modeling

- Can we think of complex robotic systems *before* we build them?
- Can we answer *"what if*" questions and can we find *adequate* solutions?
- Can we put systems together out of *configurable "as is*" *building blocks*?
- Can we keep the behavior when we e.g. exchange the middleware?




3

RobMoSys Conformant Toolings

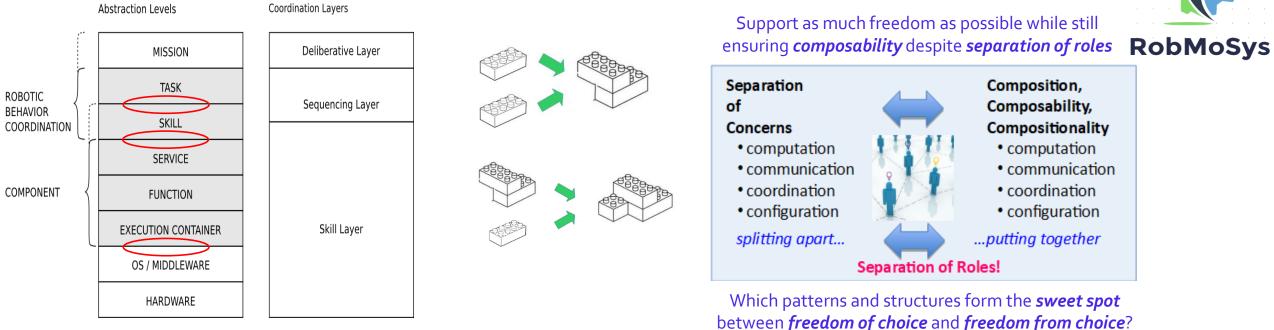
RobMoSys is more than just another project ...

- is a community *moderator*, is *most inclusive* and generates a *"movement*"
- *joins forces* to address the most challenging questions together
- builds a *positive atmosphere* and *team spirit* in the *community*
- builds trust by openness and accessibility: *transparency has priority* over completeness
- provides a **methodology** to organize the *"robotics body-of-knowledge*"
- provides consistent, agreed and resilient **reference structures** for making robotics accessible and usable
- underpins its benefits by selected and concrete **success stories (tooling, pilots, applications, community, ...)**

Explication and management of the

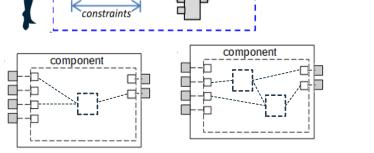
- relationship between different approaches,
- interfaces between different roles,
- interfaces between different *building blocks*,
- interfaces to different implementation technologies

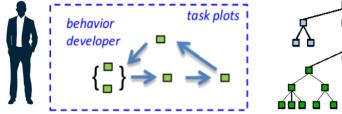
Make all accessible and usable in the form of

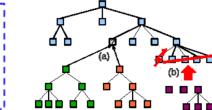

- better models,
- better tools,
- better systems

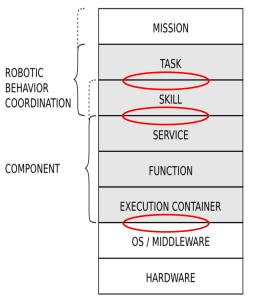
Definition of the RobMoSys Ecosystem:

The collection of assets (tools, models, software components, application pilots, guidance documents) and services (e.g. for adoption, coaching) issued by RobMoSys, which are developed, maintained and evolved by the RobMoSys Community.



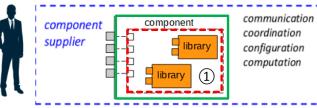

task plots function constraints system behavior system function development constraints builder A architect developer library function Н constraints constraints constraints communication component component coordination supplier safety configuration computation engineer constraint constraints


Composition, Blocks, Ports, Connectors, Data Sheets, Models



Я

IMA DDS

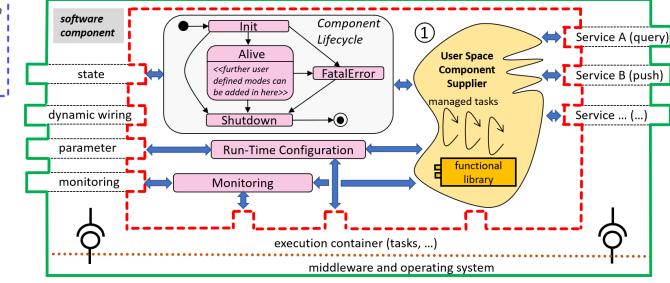

7

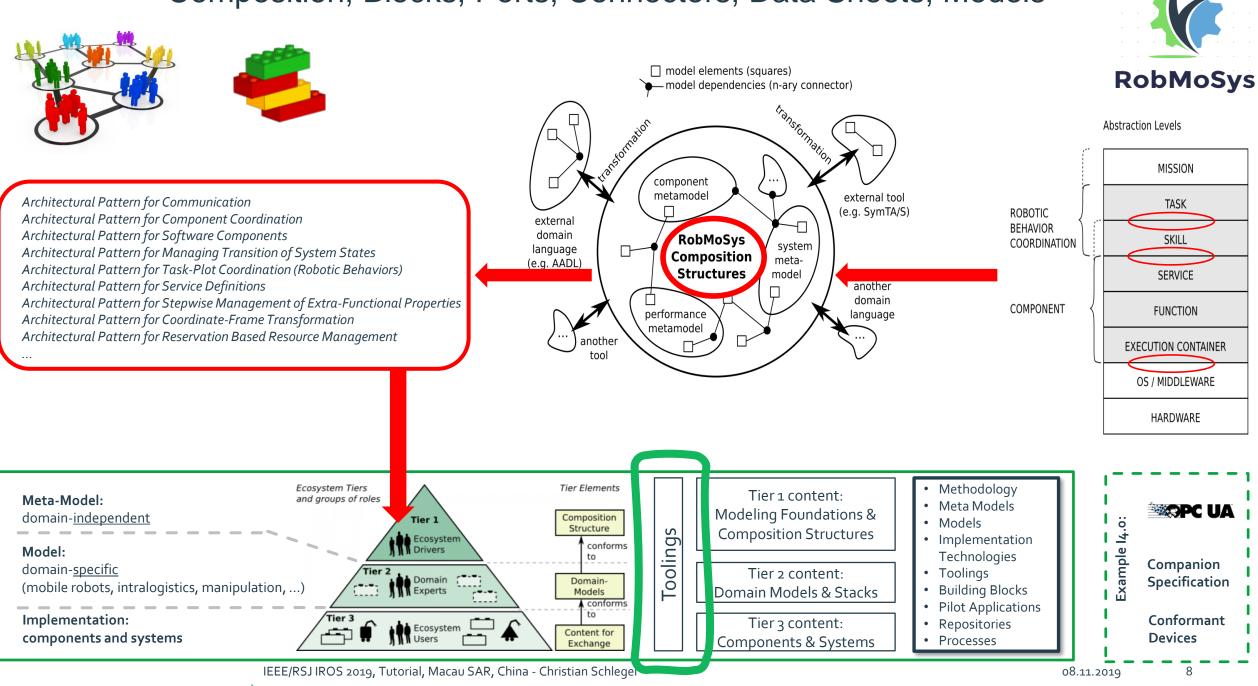
Windows 10

08.11.2019

obuntu

Abstraction Levels

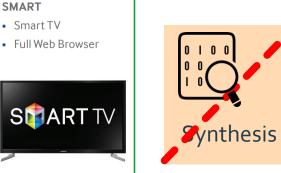


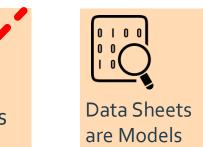

S/W component with

- communication (service-oriented ports),
- configuration (resources, parameters),
- coordination (modes, lifecycle),
- computation

system

builder

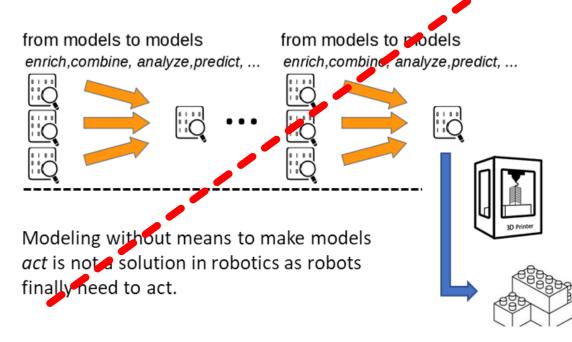



PICTURE QUALITY

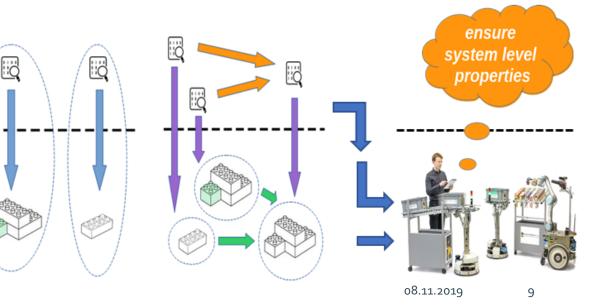
- Full HD 1080p
- Motion Rate 60
- Wide Color Enhancer

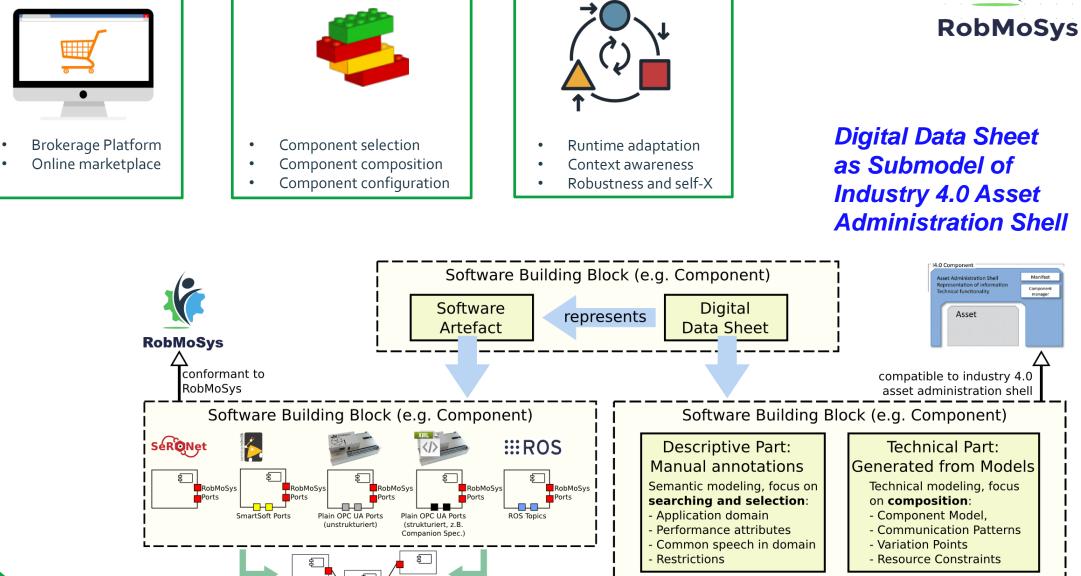
CONNECTIONS

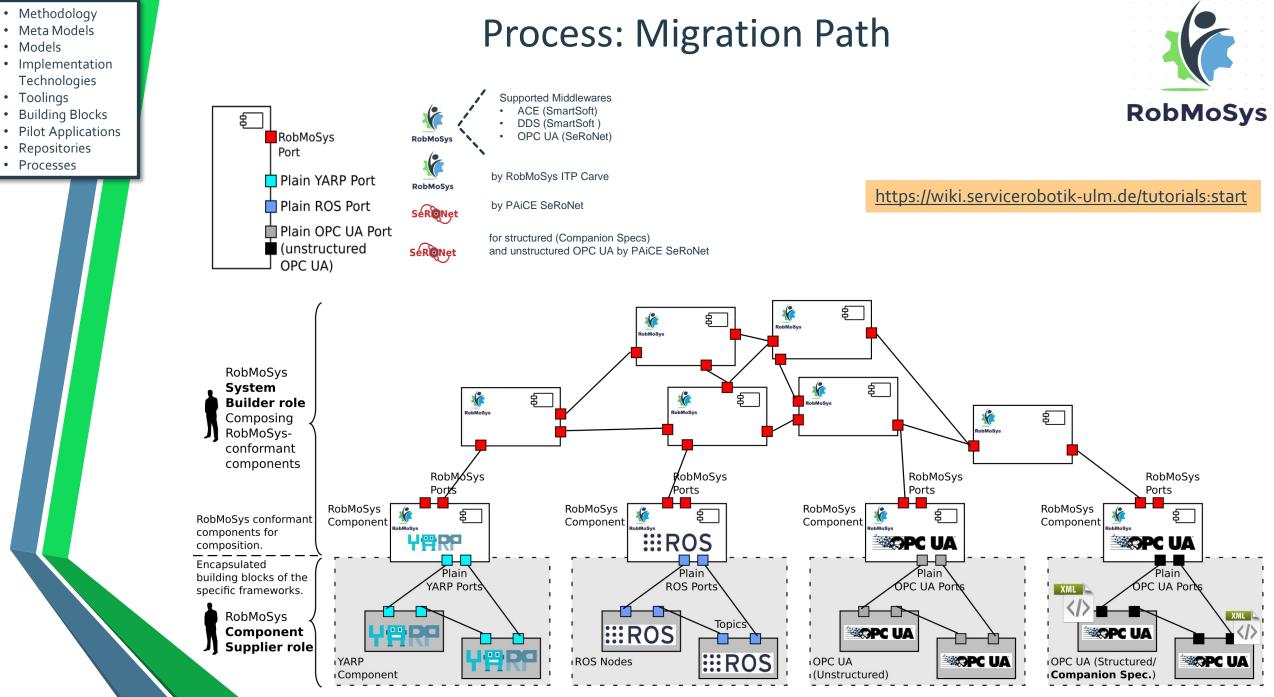
- 2 HDMI[®] Connections
- 2 USB Connections
- 802.11n Wi-Fi Built In
- 1 Component in
- 1 Composite In (Shared with AV Component input)



eets


Describes outside view, including internals only as far as you need to know them for using the asset and for becoming able to predict its fit (behavior, structure) for your context


Composing different models for a full-fledged model for synthesis as the last step in the workflow so far only works in selected use-cases of 3D-printing.



Data sheets (models of artefacs that act) *represent* components, subsystems, task-plots etc. Suitability, traceability, simulation, etc. of system properties all via *composed data sheets*. When all is fine, then *compose* (put together and accordingly configure) the real artefacts to get the real system with properties as expected.



- Methodology
- Meta Models
- Models
- Implementation Technologies
- Toolings
- **Building Blocks Pilot Applications**
- Repositories
- Processes

Process: Coverage and Conformance

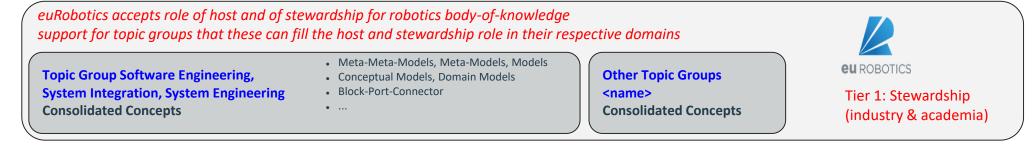
RobMoSys provides a *concept & structure & mechanism*

- to deal with different coexisting levels of maturity, acceptance, innovation, ... •
- to achieve evolvement, be inclusive, to achieve trust, to go beyond project life-times, ...

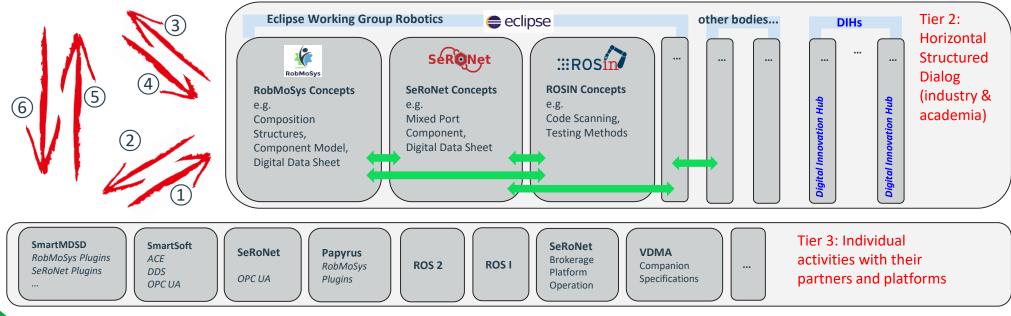
Build upon the RobMoSys composition structures and align with them!

Wiki "Incubator" => Wiki "Stable Body-of-Knowledge"

- Methodology
- Meta Models
- Models
- Implementation Technologies
- Toolings
- Building Blocks
 Dilat Application
- Pilot ApplicationsRepositories


Processes

• to achieve evolvement, be inclusive, to achieve trust, to go beyond project life-times, ...

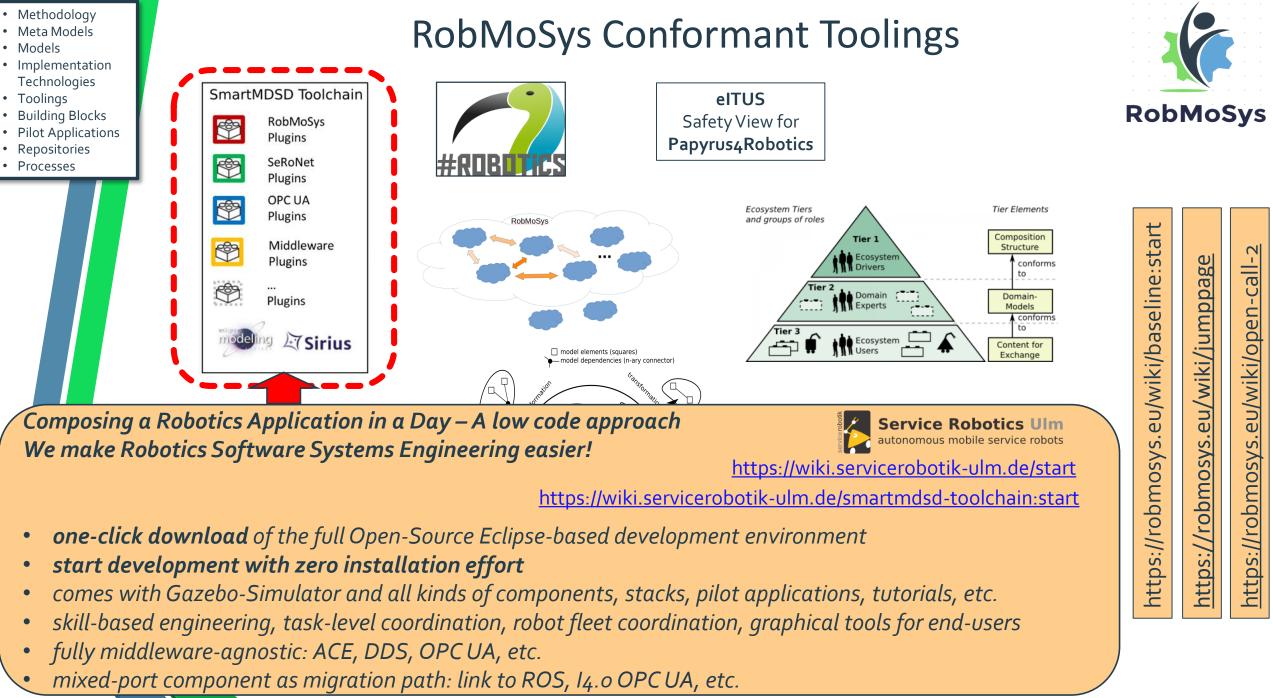

to deal with different coexisting levels of maturity, acceptance, innovation, ...

RobMoSys provides a *concept & structure & mechanism*

Process: Sustainability

- Methodology
- Meta Models
- Models
- Implementation Technologies

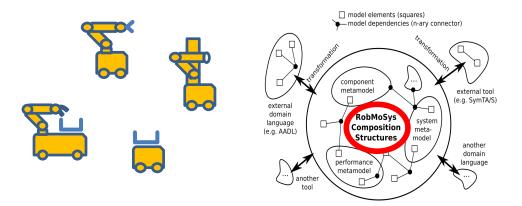
Tier 3 Systems

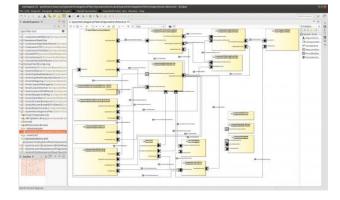

- Toolings
- Building Blocks
- Pilot Ap
- Reposit

• Process

RobMoSys Open Access Repositories

Building Blocks Pilot Applications	Name				Descriptio	on	Purpose	Vendor	Tooling	Status	Figure	K	COMOS	sys
Repositories Processes	SystemTiagoNavigation	n			the naviga the Intralo	leton that covers tion aspect of gistics Industry Fleet Pilot and	Navigation	HSU	SmartMDSD Toolchain v3	Ready				
					Manipulati	on Pilot. This vers the TIAGo	ht	tps://r	obmosy	s.eu/	wiki/ma	odel-dire	ctory:star	t
RobMoSys Wiki	Red	cent Changes M	Seard Iedia Manag		Mainpage Imprint Ot ske	/Gazebo. leton that covers tion aspect of	Navigation	HSU	SmartMDSD Toolchain v3	Ready	-			
You are here: RobMoSys Wiki » RobMoSy				le of Co	Tier 3 Comp	onent Mod	els							
RobMoSys Mod	ael Directory			obMoSys Tier 2 Do	Name		Des	scription			Purpose	Vendor	Tooling	Stat
page for a legend. Tier 2 Domain Models			*	Tier 3 Co Tier 3 Sy Explanati	SmartCdlServe	er	Loc	okup (CDL) stacle avoio	ne Curvature Di) algorithm for f dance. It consid I kinematics of i	ast local lers the	Navigation	n HSU	SmartMDSD Toolchain v3	Read
Name	Description	Purpose Universal	Vendor						polygonal shap	-				
CommBasicObjects	A collection of very basic service definitions and communication objects for use in almost every robotics system.	Universal	HSU	Smart Toolch	ComponentLaserObstacleAvoid				serObstacleAvo		Navigation	n HSU	SmartMDSD	Read
CommNavigationObjects	A collection of domain models for wheeled robot navigation.	Navigation	HSU	Smart Toolch				component implements a simple reactive obstacle avoidance.					Toolchain v3	3
CommRobotinoObjects	A collection of domain models for use with the FESTO Robotino robot.	Mobile-Base	HSU	Smart Toolch	S ComponentPla	ayerStageSimulato			verStageSimul	ator	Simulatior	n HSU	SmartMDSD	Read
CommLocalizationObjects	A collection of domain models for localization .	Localization	HSU	Smart Toolch	Componenti la	gerotageonnaiaa	sim	ulates a ro	bot in a 2D bitr	mapped	Cintulation	1 1100	Toolchain v3	- NOUN
		1	HSU	Smart					using Player/Sta	-				
CommManipulationPlannerO	bjects A collection of domain models for (mobile) manipulation.	Mobile Manipulation	1150	Toolch			offe	ers several	services for co	ntrolling				
CommManipulationPlannerOl							the	robot, suc	services for co h as sending na roviding access	avigation				

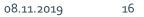



IEEE/RSJ IROS 2019, Tutorial, Macau SAR, China - Christian Schlegel

From ROS-specific coding to framework-agnostic modeling

Models always have a purpose: overall purpose is consistency

- organize consistent abstraction for e.g. prediction
- better understanding in early phases avoids costs at later stages
- organize interfaces and ensure fits while decoupling roles, responsibiilities, scopes, etc.
- ensure traceability of properties, conformance by design and not just by discipline, etc.



RobMoSys

A model-driven approach allows to

- ...secure your design and solution efforts
- ...decouple different paces of evolution
- ...be technology-agnostic (semantics: early binding / technology: late binding)
- ...predict what you get before you build it
- ...exploit the power of combinatorics
- ...explicate otherwise hidden magic numbers
- ...benefit from low effort in modifications towards lot size 1
- ...achieve robust job fulfillment by context-aware run-time decisions

otik	~	

	Christian Schlegel, Technische Hochschule Ulm
09:20 - 10:00	Interactive Tool Demo: Open Source Eclipse-based Tooling for System Composition: Piecing together software components to pilot applications Alex Lotz, Technische Hochschule Ulm
10:00 – 10:45	Interactive Tool Demo: Open Source Eclipse-based Tooling for Component Builders: Middleware-agnostic robotics software components Alex Lotz, Technische Hochschule Ulm https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start
10:45 – 11:15	Coffee Break
11:15 – 11:55	Interactive Tool Demo: Safety-analysis by Model-Driven Tooling Selma Kchir, CEA List
11:55 – 12:35	Interactive Tool Demo: Stepwise Migration to Model-Driven Development: Linking Legacy Systems via the Mixed-Port Component, Linking ROS-Systems, OPC UA Systems, etc. Alex Lotz, Technische Hochschule Ulm
12:35 – 12:55	The Role of Higher-order Models in Robotics and its Reasoning Challenges Herman Bruyninckx, KU Leuven
12:55 – 13:00	Wrap Up: Summary of what to find where, how to get involved etc. Christian Schlegel, Technische Hochschule Ulm

Schedule

Towards an Open and Industry-Grade European Robotics Software Ecosystem

09:00 - 09:20