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Abstract—For service robots that work in an everyday
environment, reliable perception of the environment, its objects
and their properties is a mandatory prerequisite.

However, this is still a challenge. Commonly used approaches
for object recognition are passive and will never be able to
definitely identify objects in all cases. We propose an approach
of active perception for object recognition by systematic ac-
quisition of new and previously hidden information. This is an
efficient and reliable way to improve perception abilities and
overcome weaknesses of passive approaches.

We make use of cues of an initial recognition in the full
scene and then systematically move a camera mounted on a
manipulator around an object to acquire new information. We
describe the overall recognition system in a real scenario using
contextual knowledge for the purpose of object recognition with
multiple algorithms and views.

The approach is demonstrated in real-world experiments
with a service robot acting as butler. It uses active perception
to distinguish similar objects and to get additional object
properties such as their filling level or current mode of devices
(e.g. coffee machine).

I. INTRODUCTION

Typical tasks of autonomous mobile service robots include
mobile manipulation in environments made for humans,
not for robots. Therefore it is a mandatory prerequisite to
perceive the environment and especially objects and their
properties the robot has to work with. This research topic
has been recognized and is being addressed in several com-
petitions (e.g. [1]). Although a huge variety of methods for
object recognition is available, it is still an open challenge.
The environment is unstructured, complex and regardless of
the robots abilities and goals. The robot therefore has to
deal with the challenges that the real world defines. In such
environments, methods for everyday use have to be robust,
efficient and aware of (limited) resources.

Perception capabilities are limited by the sensors reach.
Objects may be visible only partially due to occlusion, may
be too far away or the important information to recognize an
object is printed on its back and thus hidden.

Many approaches rely on a single method or algorithm for
object recognition, but it requires the skillful combination
and integration of a variety of available approaches. This
requires new methods to interpret the output of the existing
approaches in order to combine them.
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Fig. 1. A service robot in an everyday environment. The initial object

recognition on the full scene (1) brings cues about objects in the scene.
The cues are then exploited to actively find new information (2), (3) about
the objects using a camera mounted on a manipulator and multiple object
recognition algorithms. This stepwise refines the recognition probability.

As service robots for mobile manipulation are equipped
with manipulators, we propose an approach that combines
action and perception to make the otherwise passive process
of object recognition an active one (fig. 1).

An active recognition process particularly has to be re-
source efficient. Mobile manipulation requires a lot of re-
sources due to its complexity. The robot therefore has to
carefully evaluate the effort and reward of actions to be taken
by weighting them. In this process, the robot systematically
obtains more information about the environment to enhance
its world knowledge. This is done by taking into account
the context of the current task and current knowledge as
well as prior knowledge about the environment and objects.
Throughout the whole process, we use different sensor
data, algorithms and views in combination with the help of
probabilistic methods for robust object recognition.

At a glance, our approach runs object recognition on a
scene image to get a first cue of objects in the scene. Using
prior knowledge, these cues are then exploited to generate
an efficient and informed behavior in which an eye-in-hand
camera mounted on a manipulator systematically inspects
objects to extract further cues (systematic object inspection).
These semantic cues found during exploration are fused
probabilistically to a final recognition result.

This paper combines the approaches of [2], [3] and
integrates them into one scenario. We take advantage of
active perception to get properties such as filling level or



current mode of a device and describe how the overall object
recognition system works, putting focus on the active per-
ception part. We address the topic of object recognition using
multiple algorithms, selection of viewpoints for acquisition
of new information based on an expected utility, collision
free placement of an eye-in-hand camera and the integration
into the overall system architecture.

The experiments show a butler robot in a home environ-
ment to prepare coffee and deliver similar appearing objects.

II. RELATED WORK

In active perception for object recognition, the next best
viewpoint has to be determined. The authors in [4], [5]
find viewpoints by considering the geometry of objects and
select their views on the basis of visible surfaces. Our work
considers features as basis for the determination of the next
viewpoints as they are an information about what is on a
surface. This enables us to evaluate the benefit of viewpoints
with respect to the expected classification quality.

In contrast to our work, viewpoint planning is often used
for model learning [6]. We know the object model and
find the next best view for recognition by taking the object
properties and environment constraints (e.g. occlusions) into
account. Learned models and views, however, can be used
in our approach as input for viewpoint selection.

In [7], a robot recognizes objects placed on a table by
driving around it on a circular path. Object hypotheses from
different viewpoints are integrated. They do not consider
different kinds of features or algorithms for viewpoint selec-
tion. Observing the scene on a circular path is still limited
compared to an eye-in-hand camera.

The use of foveal cameras [8] brings data of higher quality
(close-up, high-res image) but no new additional data since
the perspective stays the same.

In [9], the authors modify the environment for the purpose
of perception. They segment cluttered scenes by pushing
objects and observing the generated motion. In [10], objects
are grasped and rotated to find a barcode without any
knowledge about where it may be. However, modifying the
environment for object recognition is not always necessary
or even possible. We propose our approach as an option to
consider before such complex actions are taken.

The problem of object search [11] differs from our prob-
lem such that objects have to be found rather than recognized.
The shared problem between object search and this paper is
where to look next. The search space in object search is the
complete environment (room, building). In our approach we
only focus on the area surrounding a single object where
we need to find features for recognition. Our work can be
applied after object search for reliably identification.

For object recognition itself, impressive approaches like
MOPED [12] or algorithms in the Point Cloud Library
[13] exist. It is our goal to combine algorithms to use
their strengths. The authors in [14] combine the output of
algorithms for color, depth and texture features for object
recognition based on histograms. The common output of
algorithms is a distance measure of histogram comparisons.
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Fig. 2. The system view of the approach showing relevant components for
object recognition and their interactions. It can be grouped in passive and
active part of object recognition and system coordination.

The object identification is done using k-Nearest Neighbor
on the feature level but not by a higher level probabilistic
fusion of algorithm results.

ITII. SYSTEM OVERVIEW

From a system point of view, the individual parts are
separated in components. Object recognition can be grouped
in a passive part and active part (fig. 2). The current
implementation uses SmartSoft [15], a component based
approach for robotics software.

The passive part runs object recognition on the input of
different sensors such as a RGBD camera or an eye-in-
hand RGB camera. Multiple algorithms classify objects and
estimate their pose. The results are fused probabilistically.

The active part manages the acquisition of new informa-
tion of objects. It decides from where to look at objects,
positions the sensors, triggers and configures the object
recognition (passive part) to process the data from new
perspectives and finally fuses the results of individual in-
spections as reported.

A knowledge base keeps a model of the environment
which is updated based on the results of the recognition
process. Regarding object recognition, it holds object names,
instance identifiers, location and additional properties. The
sequencer [16] uses the knowledge base and is responsible
for the overall control and execution of the robots current
task. It configures the object recognition and all other com-
ponents in the system at runtime depending on the current
context of the task.

For example, if we know to stand in front of a table,
the working area to search for objects can be limited to
the known height of the table. When in front of the dining
table in the living room, no coffee machine is expected.
When the task is to fetch a cup from the kitchen counter,
no coffee machine must be recognized. We make use of this
contextual knowledge and configure the object recognition to
only recognize objects that are expected or relevant (encoded
depending on task and location in the knowledge base).

The required recognition probability is a threshold until
which objects are further inspected. This value could derived
from a safety module, e.g. high probability for medicine.
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Fig. 3. The methodical view on the approach. An initial scene image
(1) is segmented to get object candidates. These are processed using
multiple algorithms and the results fused probabilistically. Based on these
initial cues, viewpoints are generated, the best selected and the camera
positioned. Images acquired this way (2), (3) are used as next input for
object recognition.

All these parameters depend on the current context (task,
location, etc.). This is currently prior knowledge in the
knowledge base (cf. [16]) and may also be determined at
runtime. The configuration also enables the reduction of
resources, since fewer algorithms need to be run and fewer
inspections are necessary.

Besides classification of objects, the sequencer may re-
quire more information on the objects properties to finish
the current task. It may therefore trigger the active part
to inspect object properties. A property in the context of
object inspection is a descriptive element of an object that
can change during its existence and is thus not used for
classification. This is for example the fill level (cups might
be full or empty) or mode of a device (a coffee machine may
be in standby, making coffee or needing refill). Therefore, the
color of an object is not a property for property inspection
but could be a feature used for classification that can be
inspected. We realize this by also considering the properties
during object training.

A methodical view on the object recognition process is
given in fig. 3 and will be addressed in the following sections.

IV. PASSIVE PART: OBJECT RECOGNITION

Object recognition can take both RGBD images for initial
recognition and RGB images for inspection as input (fig.
3, left). A first detection step segments the objects from
the scene into object candidates, processes them in several
algorithms, and fuses them to a final result. It is saved in the
scene model which is shared with the active part.

A. Multiple algorithms for recognition

Multiple algorithms are run on each candidate (3D point
cloud and cropped RGB image) for recognition and pose
estimation. The algorithms use different features, e.g. color,
texture or geometrical properties and match them to refer-
ences from the database (fig. 4).

A simple custom feature based 3D model matcher is used
to recognize objects based on their shape, a color histogram
algorithm (standard OpenCV implementation) to consider the
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Fig. 4. Algorithm execution processes object candidates and matches them
against the database. They output a recognition probability and pose which
are fused to a final belief.

objects color and MOPED [12] for textured objects. Since
household goods usually have text or barcode labels, two
OCR and a barcode algorithm are used for inspection.

The set of algorithms to execute is determined at runtime
depending on the recognition context (objects to recognize
and input source). For example, OCR is only run on high-res
eye-in-hand camera images for objects with text labels.

B. Probabilistic output and fusion

The algorithms output a probability P(x) [2] that indicates
the quality of recognition (fig. 4), i.e. the belief that the
candidate is of type z. The recognition probability is a
uniform and semantic interface which allows the combination
of algorithms at the level of results. In contrast to combining
results at the feature level, it improves the integration of
existing algorithms since they can be extended to return a
recognition probability.

In a last step, the results are probabilistically fused to a
final hypothesis. Fusion considers the recognition probability
P(x) and combines it with the probabilistic algorithm quality
Q(z) [2]. Q(x) states how well an algorithm is able to
identify an object (e.g. color can not distinguish shapes).

V. ACTIVE PART: ACQUISITION OF NEW
INFORMATION

Cues about object types from the local scene model are
used to generate and select the next best views (fig. 3, right).
The manipulator movement to place the camera is calculated,
simulated and then executed. The object recognition is trig-
gered again (fig. 2 and 3) with the eye-in-hand camera image
as input. The result is a new hypothesis from an independent
observation. It is probabilistically fused with existing ones
and updates the scene model. This brings a stepwise en-
hancement of the recognition probability in each inspection
step (fig. 1). The inspection of one object continues until
the recognition probability reaches the previously configured
threshold (required recognition probability, fig. 2) or until no
further unvisited viewpoints exist.

A. Inspection planning

To generate viewpoints, the half sphere around the normal
vectors of the object features (e.g. text or barcode labels) are
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Fig. 5. Based on an initial cue of the object type, viewpoints are generated
and a utility function is applied for evaluation. The next best viewpoint
(green) in this example is directed at the reliable barcode.

Fig. 6. The eye-in-hand camera mounted on the manipulator (left) and a
typical image captured by this camera during object inspection (right).

sampled based on the object type of the best hypothesis (fig.
5) [3]. A viewpoint is the 6D pose at which the camera is
placed to look at the object.

A single viewpoint is not sufficient because it might
not be possible to position the camera at that viewpoint
due obstacles, kinematic constraints or no path to reach
the position. They are regenerated as soon as the object
type of the best hypothesis changes. This is necessary since
viewpoints were generated based on the features of the
previous hypothesis.

Viewpoints are chosen with the strategy to confirm the
current hypothesis. The viewpoint promising the best recog-
nition result considering the effort is the best one. For this
purpose, viewpoints are evaluated by weighting cost and
benefit for recognition which results in an utility value.

For the utility, we reuse the quality Q(z) as benefit and
use angular deviation to the surface normal and euclidean
distance from current camera position to the viewpoint as
costs. This can be extended to use manipulation time or real
travel distance/time of the trajectory. The utility is formulated
as the sum of these values (equally weighted, costs negative)
and updated for each object inspection [3]. The viewpoint
with the highest utility is the “best viewpoint” (fig. 5).

This method of inspection planning is also used for
positioning the camera when properties have to be detected.
Special property features are used for the generation of
viewpoints.

B. Manipulation

Since the robot is not a passive observer anymore, it must
be ensured that there are no collisions with the environment.
OpenRave [17] is used for collision free manipulation plan-
ning to position the camera (no grasp planner is used). It
loads the environment model from the local scene model
(fig. 3). If an object is identified sufficiently enough, its exact
3D model from the object database is used for manipulation
planning. Otherwise, the bounding box of the objects is
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Fig. 7.

The robot in a home environment while running Experiment II.

used for manipulation planning. This adds to the robustness
required for everyday use, as 3D sensor data seen from one
view is actually no full 3D measurement.

If simulating the camera movement fails (e.g. config-
uration collides with obstacle), the viewpoint is dropped
and the next best is tried. Otherwise, the path is planned
and the camera is positioned. After successful recognition,
other viewpoints pointing at the same feature are discarded
assuming that they will not enhance the recognition since the
best one was already used.

VI. EXPERIMENTS AND RESULTS

Two experiments are conducted using the service robot
“Kate” in a home environment (fig. 7). The first one shows
excerpts of a 30 minute “robot butler” scenario where Kate
can be called over to take orders from persons through
speech. We discuss those parts that use active perception.
In the second experiment, we discuss the recognition per-
formance of a pick-up and drop-of task in detail. The
experiments focus on recognizing few but similar objects
and their properties which are representative for household
goods. Videos of all experiments at [18].

A. Experimental Setup

Kate is based on a Pioneer P3DX platform and equipped
with a Microsoft Kinect RGBD camera on a pan-tilt-unit. A
Neuronics Katana manipulator is used for object manipula-
tion and inspection using a small high-resolution (2560x1920
pixel) RGB iDS imaging uEye camera mounted near the tool
center point (fig. 6).

B. Experiment I: The Robot Butler Scenario

In the course of the demonstration, the robot is called to
the dinner table (fig. 7) where two persons order coffee with
sugar and a pineapple juice. After delivering the orders, it is
called to clean up the table.

All orders are different and demonstrate object recognition
for mobile manipulation. In cases where a reliable object
recognition is required, objects are actively inspected.

During the scenario, the robot fetches objects from differ-
ent locations (fig. 7). The locations of objects are predefined
in the knowledge base, so the robot knows for example that
cups can be fetched from the kitchen counter.
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a pineapple juice/”Ananas” (right object). It is of similar appearance as
grapefruit juice (left object). They differ in their barcode and text labels
naming their flavours. Texture is very similar. They are of the same color.

The eye-in-hand camera positioned to capture the text label of

System coordination is done with SmartTCL [16], which
handles all variations that come by failures during execution
(see video “Robot Kate cleans up the table” at [18]).

1) Operating the Coffee Machine: In order to deliver the
coffee with sugar, the robot first approaches the kitchen
counter. The robot positions the scene camera to point at
the kitchen counter based on the current context (location:
kitchen counter). A single run of the object recognition
brings enough recognition reliability to identify cups and
sugar. After pouring sugar, the robot takes the cup to the
coffee machine, recognizes the coffee machine, puts the cup
into the machine and presses the button to make coffee.

Working in the real and complex world, mistakes and
problems occur. So to be sure that the machine is making
coffee, the robot reads its display to know about the current
mode of the coffee machine. The eye-in-hand camera is thus
positioned to point at the display for inspection of property
“current mode” of the coffee machine (fig. 8). The display
showing “Ready” tells that the machine is still in standby. “1
Standard Coffee” tells that coffee is being made. The robot
then delivers the cup of coffee or pushes the button again.

2) Fetching Juice: When the robot has to fetch juice, it
has to decide which of two similar appearing juices is the
correct one (fig. 9). From the current context (location =
sideboard), the robot knows that juices with different flavours
are to be expected. Thus, the object recognition is configured
for high probability (P(z) > 0.65).

The initial object recognition distinguishes the juices only

Fig. 10. Input image for initial recognition (left) of the scene and inspection
images during inspection of the property “fill level” (right). Objects from
left to right: onion chips, an empty and a full “hot and spicy” chips can.

very little, the overall probability is therefore not high
enough. The robot then inspects the two objects. The first
object is identified reliably enough by reading its text label.
The robot chooses the text label instead of the barcode as the
text label can be reached with lower effort. The second object
is identified by reading the barcode. The robot then grasps
the pineapple (“Ananas”) juice and delivers it. A detailed
evaluation of a similar experiment can be found in [3].

3) Cleaning up the Table: At the end, the robot is ordered
to clean up the table. Its task is to put reusable items into the
kitchen sink and other items in the trash bin. The knowledge
base contains entries that tell which objects have to be put
where. For this task, the objects do not need to be recognized
very reliable, that is, the flavour of the juice on the table
does not matter. The required recognition probability is thus
lowered (P(x) > 0.3). The robot does not actively inspect
the objects on the table. The robot is thus not sure about
the flavour of the juice but knows that it is some kind
of juice which has to be thrown into the trash bin. When
fetching cups, we are able to look inside if there is coffee
left (property: fill level), to not to spill when stacking them.

C. Experiment II: Potato Chips

Three cans of potato chips are standing on a sideboard (fig.
10). One can is of flavour onion and two cans are of flavour
“hot and spicy”, but only one of them contains potato chips.
The two flavours have the same texture and differ only in
their color (green/black), barcode and text labels that tell the
flavour and ingredients. The robot is ordered to bring “hot
and spicy” potato chips and has to be sure that it is filled.

It can be observed that the robot first takes a look at the
whole scene (fig. 10, left). It acquires new information by
reading all their barcodes. It randomly looks into the first of
the two “hot and spicy” cans (fig. 10, right) which turns out
to be empty, looks into the other one which turns out to be
full and finally grasps and delivers it.

When the initial object recognition is run, the recognition
probability is very low for all objects (fig. 11). The hypothe-
sis is correct for the onion flavour but the result also identifies
“hot and spicy” as onion. The simple model matcher is
not able to distinguish the objects due to their identical
shape and therefore gives the same recognition probability
for both hypotheses. MOPED is unable to identify the
objects because both the bad angle to the camera and almost
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Fig. 11. Rounded recognition probabilities for each of the three candidates.
The left part shows the intermediate probabilities and fused result. The right
part shows inspection of barcode and property “fill level”.

identical appearance (MOPED uses grayscale images for
identification). The used simple color histogram algorithm
has a poor recognition quality Q(z) = 0.4 and its result
is therefore also low. The fused recognition probability is
still below the threshold (P(x) > 0.65). Even though the
flavour was not correctly recognized, the initial recognition
was able to tell that the objects are potato chips and not cups
(fig. 11, result of initial recognition). The robot can therefore
use this knowledge to inspect the objects and acquire new
information for final identification. The systematic inspection
of the objects using the barcode recognition is successful.
Since two objects of the same flavour were recognized, the
robot looks into the cans and delivers the full one. Full and
empty cans are distinguished using color histograms trained
for the inside view.

D. Results

The experiments demonstrate that the proposed recogni-
tion system works both in identifying similar objects as
well as in acquiring properties of objects reliably in an
everyday environment. They prove that the exploitation of
cues for systematic object inspection to actively acquire new
information improves or even realizes object recognition. The
overall performance can only be achieved using passive and
active perception together. Both make use of another and
cannot solve the perception task on their own in every case.
Due to the careful evaluation and selection of actions to be
taken, the robot was able to minimize its effort. Only thus,
the robot was able to recognize objects with one manipulator
movement. Without active perception, a complex scenario as
in experiment I would not be possible.

VII. CONCLUSIONS AND FURTHER WORK

This paper proposed a method of active perception that
combines multiple data sources, multiple views, multiple

algorithms and the use of context for the purpose of object
recognition. This approach closes the loop between per-
ception, action and knowledge by using cues of an initial
recognition of the scene to point an eye-in-hand camera at
objects. By acquiring new information from other views on
objects, they can be identified more reliable than it would be
possible without the ability to change the viewpoint. Active
perception is therefore a mandatory skill for service robots
that can perform complex tasks in everyday environments.
The proposed object recognition system is being used in
several real world mobile manipulation scenarios. Videos
thereof and of both experiments are available at [18].

In future, we will evaluate the selection of viewpoints and
prove the approach on another platform and manipulator with
more degrees of freedom.
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