
autonome mobile Serviceroboter
servicerobotik

Zentrum für angewandte Forschung
an Fachhochschulen

Report 2011 / 01

SmartSoft
The State Management of a Component

Christian Schlegel
Alex Lotz

Andreas Steck

Christian Schlegel, Alex Lotz und Andreas Steck
Hochschule Ulm
Prittwitzstrasse 10
89075 Ulm, Deutschland

schlegel@hs-ulm.de, lotz@hs-ulm.de, steck@hs-ulm.de
http://www.hs-ulm.de/schlegel

Copyright © Schlegel, Lotz, Steck

25. März 2011

SmartSoft
The State Management of a Component

Christian Schlegel

Alex Lotz

Andreas Steck

ii

Contents

1 Introduction 1

2 State Pattern in SmartSoft 3

2.1 Master – Slave Relationship of the State Pattern 3

2.2 Mainstates and Substates . 4

2.3 Implementation overview . 5

2.4 Performing a state-change-request . 7

3 Generic State Automaton based on State Pattern 9

3.1 Lifecycle of a component . 9

3.2 Integration of a component’s lifecycle into the state pattern 10

3.3 Implementation details of the state pattern extensions 13

3.4 Application of the new features of the state pattern 14

4 Application Example for the State Automaton Usage 19

A Generic state automaton – concept slides 23

iii

Chapter 1

Introduction

This document is the second technical report in the ZAFH Technical Report Series. The focus

in this document is on the state management of a component. This domain is addressed by

the state pattern in SmartSoft [1, chapter 5]. The original state pattern is described in

[1, section 5.8]. The state pattern is extended by a generic state automaton. Its concept is

described in the set of slides attached at the end of this document as appendix in chapter A.

Some further descriptions are available in [3].

This document describes technical details from the implementation of the original state

pattern in chapter 2 and the extensions of the state pattern for the generic state automaton

in chapter 3. In addition, chapter 4 gives a practical example that demonstrates the usage of

the new features in the state pattern on a source code basis.

The further development of SmartSoft and implementation of ACE/SmartSoft was

funded by Robert Bosch GmbH (BOSCH) with the support of Dr. Michael Dorna.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

State Pattern in SmartSoft

This chapter describes technical details from the implementation of the state pattern as part

of the whole SmartSoft idea [1, chapter 5]. Further details on the underlying ideas and

motivation can be found in the set of slides attached as appendix in chapter A.

2.1 Master – Slave Relationship of the State Pattern

< >Service Component

...Task A Task X

cr
it
ic
al

cr
it
ic
al

acquire -
substate

release -
substate

< >Service Component

...Task A Task X

cr
it
ic
al

cr
it
ic
al

acquire -
substate

release -
substate

st
at
e< >Behavior

m
as
te
r

...

< >Service Component

...Task A Task X

cr
it
ic
al

cr
it
ic
al

Coordination
Task

acquire -
substate

release -
substate

Figure 2.1: Master – slave relationship of the state pattern in SmartSoft
.

The state pattern [1, section 5.8] in SmartSoft supports a master-slave relationship to

selectively activate and deactivate states. An activity can lock a state at the slave to inhibit

state changes at critical sections as shown in figure 2.1. A critical section prevents an activity

from being interrupted at an unsuitable point of execution. The state pattern gives the master

precedence for state changes over the slave. As soon as a request for a state change is received

from the master, the slave rejects locks for states that are not compatible to the pending state

change of the master. The requested state change of the master is executed by the slave as

soon as all locks for states affected by the state change are released. The state pattern is,

for example, used by the task coordination component of the sequencing layer for graceful

deactivation of component internal user activities.

3

4 CHAPTER 2. STATE PATTERN IN SMARTSOFT

2.2 Mainstates and Substates

A state slave defines a state automaton with mainstates on top level. Each mainstate is a mask

for a subset of previously defined substates. A state master commands only mainstates. A task

inside of a component acquires and releases only substates. This decouples the internal usage

of the state slave (component’s inner view) from the external state management (component’s

outer view).

Figure 2.2: Mapper example in a state-slave port.

Figure 2.2 shows the Mapper component with a state slave service port. The implemen-

tation of this component consists of two tasks: the CurrMapTask and the LtmMapTask (other

irrelevant details are left out for simplicity reasons). In general, a state slave automatically

provides the mainstate Neutral with exactly one substate neutral. In addition, several main-

states and substates can be individually defined by a user in a state slave. Each user-defined

mainstate automatically includes the substate nonneutral. This allows to start activities

as soon as the mainstate Neutral is left and to stop them as soon as it is entered. In the

Mapper component the mainstates BuildCurrentMap, BuildLongtermMap and BuildBoth-

Maps are defined additionally to the Neutral mainstate. Further, an arbitrary combination of

previously defined substates (apart from the substates neutral and nonneutral) can be at-

tached to each user-defined mainstate. In the Mapper component, two user-defined substates

are defined, the buildCurrMap and buildLtmMap. For example, if the mainstate BuildCur-

rentMap is currently active, the substates nonneutral and buildCurrMap are active as well.

Thus, the CurrMapTask is able to acquire the substate buildCurrMap and enters its critical

2.3. IMPLEMENTATION OVERVIEW 5

region, whereas the LtmMapTask is not allowed to enter its critical region and blocks on the

acquire call. In case the mainstate Neutral is selected both tasks are blocked. This main-

state is particularly valuable to stop all critical activities of a component and to reconfigure

its parameters or rewire its service ports.

The state pattern additionally provides the specialized mainstate Deactivated. In fact,

this is a pseudostate which is used to command a state slave to switch into its Neutral

mainstate as fast as possible. Thereby, all blocking calls caused by communication pattern

usage inside of the component are instantly unblocked with a corresponding status code.

Thus, each task is able to leave its critical region and release the corresponding substate.

This is a powerful feature of the state pattern to enforce rapid deactivation of components in

cases where a blocking wait is unsuitable for a scenario.

In case of the state pattern, the state master directly commands the subsequent mainstate

in contrast to a regular state automaton where the events trigger certain state changes. Each

previously defined mainstate can be chosen as a subsequent mainstate independently of the

previous mainstate. This enables the state master port to set a component into each desired

mainstate in a direct and simple way. At each point in time only one mainstate and its

included substates are active. During a state-change all substates that are not included in

the subsequent mainstate are deactivated and all substates that are new in the subsequent

mainstate are activated. Substates which are available in both mainstates (the current and the

subsequent mainstate) are not affected by the state-change and execute without interruptions.

In the Mapper example in Figure 2.2, a state-change from mainstate BuildCurrentMap to

BuildLongtermMap deactivates the substate buildCurrMap, activates the substate buildLt-

mMap and does not interrupt the nonneutral substate.

A task that acquires a substate (which has to be deactivated due to a state-change)

is blocked as soon as it tries to enter its critical region again (in its next run). This is

independent of other tasks which might still hold the same substate. Thus, the substate can

be deactivated as soon as the slowest of these tasks leaves its critical region (releasing the

corresponding substate).

2.3 Implementation overview

The state pattern is implemented on top of the query pattern in SmartSoft (see class diagram

in figure 2.3). Thereby, the state master internally uses the query client port to send state-

change-requests to the state slave. The state slave pattern internally uses a query server to

receive state-change-requests from the state master. All incoming state-change-requests are

processed in an internal task of the state slave and an answer is replied back to the state master

after a state-change has been successfully performed. In case of an illegal state-change-request,

an answer with a corresponding status code is replied to the state master.

6 CHAPTER 2. STATE PATTERN IN SMARTSOFT

Figure 2.3: Class diagram for the state pattern (including internal query pattern).

2.4. PERFORMING A STATE-CHANGE-REQUEST 7

2.4 Performing a state-change-request

The state slave comprises two main parts (see figure 2.3), an internal FIFO queue (the

stateList) to store all state-change-requests from the state master and an internal task

(the StateUpdateThread) which consecutively processes all these state-change-requests.

Figure 2.4: Sequence diagram for a state-change-request.

A state-change-request (caused by a call of the setWaitState method in StateMaster)

is shown in the sequence diagram in figure 2.4. First, the StateMaster creates a Comm-

StateRequest communication object with the command id CMD_SET_STATE and the name of

the target mainstate MS. After that, the query command of its internal QueryClient port

is called. The QueryClient internally calls a queryRequest and waits on the queryAnswer

from the remote QueryServer. The QueryServer forwards the request to the registered

StateSlaveHandler (derived from the QueryServerHandler), which in turn evaluates the

command id and in case of CMD_SET_STATE pushes the target mainstate MS onto the FIFO

queue.

The task StateUpdateThread blocks if the queue is empty or pops the top element from

the queue otherwise. In the latter case the task calls the updateState method (from the

StateSlave), which internally calls the update method and performs the real state-change-

procedure. After all substates that are not included in the target mainstate are deactivated

and all substates that are new in the target mainstate are activated, the StateSlave replies

an answer to its QueryServer with a corresponding status code. The QueryServer sends a

queryAnswer back to the QueryClient which releases the initial waiting thread of the Actor.

It is important to notice that an internal task is strictly necessary because the following

reasons: First, the internal query server is used to command a certain mainstate as well as

8 CHAPTER 2. STATE PATTERN IN SMARTSOFT

to request for the current mainstate. With a passive query server a request for the current

mainstate would block in case of a currently pending state-change-request. Second, multiple

state-change-requests are stored in the FIFO queue and are consecutively executed in the

correct order. Finally, with a queue it is possible to prioritise certain state-change-requests

like the command Deactivated for example as shown in the following.

In the special case when the pseudo mainstate Deactivated is commanded, the state-

change procedure is extended by a further step. After the StateUpdateThread popped the

top element from the FIFO queue (see figure 2.4), the name of the mainstate MS is compared

with the Deactivated keyword. In case of a match, the StateUpdateThread internally calls

blocking(false) in its owner class SmartComponent. Thus, all blocking calls in this com-

ponent caused by communication patterns (which wait on pending requests) are temporarily

unblocked to enable all corresponding tasks to leave their critical regions. After all relevant

tasks have left their critical regions, the StateUpdateThread internally calls blocking(true)

to restore normal behavior in all communication patterns. After that, the state-change into

the Neutral mainstate is completed and an answer to the StateMaster is replied.

Chapter 3

Generic State Automaton based on

State Pattern

The concept for a generic state automaton based on the state pattern in SmartSoft [1,

chapter 5] is originally described in the set of slides attached as appendix in chapter A.

Some further details are available in [3]. This chapter describes technical details from the

implementation of the generic state automaton based on the state pattern in SmartSoft.

3.1 Lifecycle of a component

Each component in a system goes through a set of standard-

ized states during its lifetime (see figure on the right). At

startup a component is in its Init state where all component’s

internal resources are initialized. If the component is fully ini-

tialized and is ready to deliver proper service, the component

traverses into the Alive state. This is a regular state where

a component executes its specific task. Further, a component

can be commanded to shut down independent of the previous

state. This can be done either from within the component it-

self (i.e. by firing a SIGINT signal) or from the outside of the

component by commanding the Shutdown state-change. Both

cases result in the same behavior to traverse into the Shut-

down state, to clean up component’s resources and finally to

shut the component down. During initialization and later at

runtime, critical errors can occur in a component. In this case

the component traverses into the FatalError state. This state means that the component is

not able to continue its service anymore and requires help from outside.

9

10 CHAPTER 3. GENERIC STATE AUTOMATON BASED ON STATE PATTERN

The lifecycle state automaton of a component defines generic modes for a component and

a precise semantics for each of these states with their transitions. This allows to automatically

supervise and orchestrate components at runtime.

3.2 Integration of a component’s lifecycle into the state pat-

tern

The lifecycle state automaton is independent of any robotic middleware or framework. The

state pattern in SmartSoft provides suitable structures to easily integrate the lifecycle state

automaton.

=>

MainState

SubState

Pseudostate

Figure 3.1: Integration of the component’s lifecycle into the state pattern.

Figure 3.1 shows a representation of the lifecycle state automaton by the means of the

state pattern. First, the lifecycle states are implemented as predefined mainstates in a state

slave which are available from the beginning and are stable at runtime. In particular the

mainstates Init, Shutdown and FatalError are created with exactly one substate. As a

convention each mainstate name begins with a capital letter and each substate name begins

with a small letter. Thus, each substate in the corresponding mainstate from the generic state

automaton is of the same name (besides the first letter). This enables a component to use

tasks which are active during the initialization of a component to manage its initialization

procedure. In case of a fatal error, specialized tasks can be defined which execute suitable

actions. Finally, during a shutdown of a component, special tasks can manage ordered clean

up of resources.

3.2. INTEGRATIONOF A COMPONENT’S LIFECYCLE INTO THE STATE PATTERN11

The state Alive has a different semantics. This state, is at first, a pseudo state very

similar to the Deactivated command in the original state pattern. In fact, the Alive state

is a command which is used to transfer a component into its regular execution mode after all

necessary resources in this component are fully initialized.

Figure 3.2: Mapper Example for the State Pattern

The original state pattern in SmartSoft consists of a component specific state automa-

ton. In the extended state pattern, this state automaton is placed inside of the pseudo state

Alive (see mapper example in figure 3.2). Thus, both the generic and the individual automa-

tons are combined. If a component is in its Alive state, the component’s individual state

automaton is used with the exactly same semantics and behavior as it is in the original state

pattern. In this case, all customized mainstates (and the mainstate Neutral) are externally

visible and controllable from a state master. If a component is in process of initialization,

shutdown or in a fatal error, transitions are performed according to table 3.1 (this table

sums up all transition conditions which are originally defined in the set of slides attached as

appendix in chapter A).

At startup a component is automatically set into the Init mainstate as soon as the state

slave port is initialized. The transition from Init to Alive is only allowed from within

the component itself, because only inside of the component all information are available to

decide when all necessary resources are fully initialized. Outside of the component, the Init

mainstate is visible in a state master and can be used to wait till the component is ready to

run. During initialization a fatal error can occur inside of the component (i.e. a hardware part

failed to initialize completely). The decision for this case is the local responsibility inside of

the component and thus the transition is only allowed from within the component. Outside

12 CHAPTER 3. GENERIC STATE AUTOMATON BASED ON STATE PATTERN

Target state

Current state Init Alive Neutral User-defined FatalError Shutdown

Init -/- int./- -/- -/- int./- int./ext.

Alive -/- int./- predef./- predef./- int./- int./ext.

Neutral -/- -/- -/ext. -/ext. int./- int./ext.

User-defined -/- -/- -/ext. -/ext. int./- int./ext.

FatalError -/- -/- -/- -/- int./- int./ext.

Shutdown -/- -/- -/- -/- -/- int./ext.

int. Transition is triggered internally (from state slave interface)
ext. Transition is triggered externally (from state master interface)
predef. Transition is predefined by the setUpInitialState method
- Transition is not allowed

Table 3.1: Allowed transitions between different mainstates.

of the component, the FatalError mainstate is visible in a state master. This allows to

react on this situation in a suitable way (for example this component can be commanded to

shut down). Finally, during initialization of a component it might be necessary to shut the

component down either from within the component itself (i.e. due to a local SIGINT signal)

or commanded from a state master (i.e. because the initialization procedure took too long

for the current situation in a scenario).

The command to switch into the Alive pseudo state stops all initialization activities and

activates the initial mainstate of the component specific state automaton. Per default the

initial mainstate is Neutral. In addition, during initialization of a component the initial

mainstate can be changed to one of the customized mainstates by using the method setUp-

InitialState of the state slave. From now on all customized mainstates and the Neutral

mainstate can be externally orchestrated by a state master. During this regular execution, a

fatal error can occur which is not solvable by regular error handling strategies inside of the

component and which prevents the component from providing proper service. In this case the

component is able to switch into the FatalError mainstate, which deactivates all activities

inside of the component. This is useful, because the component does not simply disappear

from the system but switches into a consistent mode and signals a problem which might be

solvable on a higher level (the system level). During the execution it might be additionally

necessary to shut down a component, either commanded from within the component (again,

due to a local SIGINT signal), or commanded from the outside by a state master (i.e. because

the component is not needed in the scenario anymore).

The FatalError mainstate is not used for regular error handling strategies inside a com-

ponent. Moreover, all problems which can be solved locally inside a component should be

solved locally and not delegated to the outside, because otherwise this leads to tightly coupled

components with unclear responsibilities. Thus, the only way out of the FatalError main-

3.3. IMPLEMENTATION DETAILS OF THE STATE PATTERN EXTENSIONS 13

state is to shutdown the component (again, commanded either from within the component or

from the outside by a state master).

Finally, a component in the Shutdown mainstate stops all other activities in the component

and activates the shutdown procedure. Thus, all relevant resources (like hardware drivers)

can be cleaned up and the component can be stopped in a coordinated way.

3.3 Implementation details of the state pattern extensions

The implementation of the state pattern extensions affects only the internal handling of

states inside of the state slave communication port. Neither the underlying communication

mechanism must be modified, nor the public interface of the state master must be changed.

The interface of the state slave is extended by three additional methods (see figure 3.3).

This allows to use the new state pattern in already implemented components without major

modifications and to use all new features in ported or new components.

Figure 3.3: Extended interface of the State Pattern.

In the state master the two methods getAllMainStates and getSubStates behave exactly

the same as before: they just return the mainstates and substates of the user-defined state

automaton. The generic mainstates and substates from the lifecycle state automaton are

not visible in these methods. They are implicitly known, because the are the same for all

components. The method getCurrentMainState on the other hand returns the real current

mainstate, even if it is one of the generic lifecycle states. The method setWaitState also

behaves exactly the same as before. However, in addition the mainstate Shutdown can be

commanded to trigger a remote component to shut down. Thus, the extended state master

can be used either in the original way or can additionally be used with the new features.

14 CHAPTER 3. GENERIC STATE AUTOMATON BASED ON STATE PATTERN

The state slave communication port keeps its original interface and is extended by three

new methods (see figure 3.3). The method defineStates allows to define any combination

of mainstates with substates as before except the reserved mainstates and substates from

the generic lifecycle state automaton. The methods acquire, release and tryAcquire can

now additionally use the substates init, fatalError and shutdown to implement specialized

tasks for the initialization and shutdown procedures inside of a component or tasks which

execute appropriate activities in case of a fatal error.

The first new method setUpInitialState in the state slave can be used during initial-

ization in a component to predefine the initial customized mainstate which is automatically

activated as soon as the state slave is commanded for the first time to switch into the Alive

mainstate. If this method is not used during initialization of a component, the default initial

mainstate is automatically set to Neutral, which exactly resembles original behavior of the

state slave.

The second new method setWaitState in the state slave is used to internally command the

generic mainstates from the lifecycle state automaton. This is necessary to give a developer

the freedom to specify when the initialization procedure is over, when a critical error occurs

or when to shut down the componen. This method internally ensures correct transitions as

defined in table 3.1, taking the previously active mainstate into account.

The third new method getCurrentMainState in the state slave is a helper method to ask

for the currently active mainstate from within a component. This is particularly useful for

observation and documentation purposes (like logging or runtime monitoring). The behavior

of the method is to return the currently active mainstate or in case of a currently pending

state-change to return the new mainstate to be activated. The latter is important to get

correct information if this method is used within the state-change handler of the state slave.

3.4 Application of the new features of the state pattern

The new features in the state pattern support a component developer to design clear struc-

tures and to clearly separate responsibilities inside of a component. Thus, the developer is

encouraged to strictly distinguish between activities, that are responsible to initialize compo-

nent’s internal resources and activities to clean up these resources. Also, the regular execution

and the fatal error cases can be now simply separated in the internal implementation in a

component.

The initialization and shutdown procedures without the usage of the state pattern are al-

ready described in the ZAFH Technical Report 2010/01 [2, chapter 3]. The same procedures

are also possible with the new features in the state pattern, but now with a strict separation

of concerns and structures. The initialization procedure of a component with a state slave is

illustrated in the sequence diagram in figure 3.4. From a developer’s point of view, addition-

ally to the initialisation of a SmartComponent class, the StateSlave must also be initialized.

3.4. APPLICATION OF THE NEW FEATURES OF THE STATE PATTERN 15

Figure 3.4: Sequence Diagramm for an Initialization Procedure in a Component.

16 CHAPTER 3. GENERIC STATE AUTOMATON BASED ON STATE PATTERN

It is the responsibility of a developer to use or not to use the state pattern. However, without

the state pattern, the internal lifecycle state automaton is not explicated in the component

and it is not possible to use them at runtime. The first important part during initialization of

the StateSlave is the definition of the customized mainstates with corresponding substates.

The simplest state automaton consists of the mainstate Active with the substate active

(as shown in figure 3.4). After that, the initial mainstate can be defined by the method se-

tUpInitialState. Again, if this method is not used, the mainstate Neutral is set per default

as the initial mainstate. Next, the StateSlave can be activated to fully manage all states.

From now on, the StateSlave is fully initialized and can be used by a remote state master

to request and command mainstates. Inside of the component the substate init can be ac-

quired by an arbitrary number of tasks to coordinate the component’s individual initialization

of resources. At the same time, the main thread can call setWaitState("Alive") to switch

the component into regular execution mode. This call can be performed independently of the

current progress in the initialization procedure. The main thread is simply blocked as long as

the initialization tasks are not finished, and is thus unblocked as soon as the last initialization

thread releases the substate init. Finally, a call of the run method starts the infinite loop

for the internal event handling (in SmartReactor).

Further, one or several tasks can be defined which internally acquire the substate fa-

talError. These tasks are idle as long as the component is not in the fatal error state. In the

regular case these tasks are even never activated, if no errors occur during the whole lifetime

of a component. However, if a fatal error occurs individual actions for each component can be

defined. Such an action is, for example, to trigger a higher level (system level) error handling

routine, or to inform the task coordination component about the error.

After a component has successfully switched into the Alive mainstate, the component’s

individual state automaton is used for state management. In the simplest case, this state

automaton consists of the mainstates Neutral (with the substate neutral) and Active (with

substates nonneutral and active). Again, the mainstate Neutral is used to deactivate all

component’s internal activities and thus to save resources and to be able to reconfigure this

component without the risk of interrupting critical activities at unsuitable points of execution.

On the other hand, the mainstate Active can be used to activate all internal activities (tasks)

in a component which calculate the data for service ports of this component. Other individual

state automatons with several different activity modes are also possible as demonstrated with

the mapper example (see figure 3.2).

Finally, the mainstate Shutdown is used to clean up component’s resources before the com-

ponent shuts down. This procedure is shown in the sequence diagram in figure 3.5. As already

shown in figure 3.4, the component starts its internal execution by calling its run method.

The shutdown procedure now can be triggered either from within the component itself (by

catching the SIGINT signal inside the handle_signal method in SmartComponent), or com-

3.4. APPLICATION OF THE NEW FEATURES OF THE STATE PATTERN 17

Figure 3.5: Sequence Diagramm for a Shutdown Procedure in a Component

manded by a state master from the outside the component. In both cases, the StateSlave is

commanded to switch into the mainstate Shutdown. Thus, the same behavior is implemented

independently of where the shutdown command is triggered from. After, the StateSlave has

activated the mainstate Shutdown, the method run is able to acquire the substate shutdown

and thus the corresponding thread is unblocked. Since the mainstate Shutdown is always the

very last mainstate in a component before the component goes down, the internal thread

inside of the StateSlave can now safely be stopped. Next, a watchdog timer is started to

ensure that a component goes down at the latest at the timeout time, even if some of the

managed tasks refuse to cooperatively stop. Three steps are necessary to cooperatively stop

all managed tasks. First, the call blocking(false) releases all blocking waits (caused by

pending requests on communication ports) inside of managed tasks. Thus, all managed tasks

18 CHAPTER 3. GENERIC STATE AUTOMATON BASED ON STATE PATTERN

are able to leave their current loop and to stop the corresponding thread. Second, the call

cancel_task(baseTask) signals all managed tasks to leave their internal loop and to stop the

corresponding thread. Finally, the method wait_task(baseTask) blocks the calling thread

till all managed tasks have stopped their internal threads. If meanwhile a timeout occurs,

the callback timerExpired from ShutdownTimer is called. This callback method releases all

entries (bound by the current component) from the naming service, closes the NamingHelper,

stops the component’s internal reactor and finally exits the execution context of the compo-

nent. All tasks inside of the component which are not finished yet are simply killed with a

SIGTERM signal. On the other hand, if all tasks stop within the timeout time, the method

wait_task(baseTask) is returned and the timer is cancelled by the call stopTimer. In this

case all component’s internal resources are already down and thus the component’s infras-

tructure can be safely cleaned up. Thereby, the server-initiated-disconnect handler is closed

and the reactor is stopped. All internal monitors must be unblocked to prevent blocking waits

inside of the destructors from service providers. Finally, the local NamingHelper instance is

closed and the StateSlave is deleted. At this point all internal resources are cleaned up and

the corresponding memory is freed. Thus, the execution context of the component can be

safely left without the risk of memory leaks.

Chapter 4

Application Example for the State

Automaton Usage

The usage of the new features in state pattern are demonstrated on a simple source code

example in listing 4.1.

1 /∗
2 ∗ s t a t e−pat tern−example . cpp

3 ∗
4 ∗ Created on : 21.04.2011

5 ∗ Author : a l e x e j

6 ∗/
7

8 #include <smartSoft . hh>

9

10 class MyStateChangeHandler : public CHS : : StateChangeHandler

11 {
12 public :

13 void handleEnterState (const std : : s t r i n g &SubState) throw () {
14 std : : cout << ”ente r subs ta te ” << SubState << std : : endl ;

15 }
16 void handleQuitState (const std : : s t r i n g &SubState) throw () {
17 std : : cout << ”qu i t subs ta te ” << SubState << std : : endl ;

18 }
19 } ;
20

21 class MyIn i t i a l i z a t i onTask : public CHS : : ManagedTask

22 {
23 private :

24 CHS : : S ta teS lave ∗ s t a t e ;

25 public :

26 MyIn i t i a l i z a t i onTask (CHS : : S ta teS lave ∗ s t a t e)
27 : s t a t e (s t a t e) { }
28

19

20 CHAPTER 4. APPLICATION EXAMPLE FOR THE STATE AUTOMATON USAGE

29 int on execute () {
30 s tate−>acqu i r e (” i n i t ”) ;

31 // TODO: perform i n d i v i d u a l i n i t i a l i z a t i o n here . . .

32 s tate−>r e l e a s e (” i n i t ”) ;

33 // break up the loop by re tu rn ing != 0

34 return 1 ;

35 }
36 } ;
37

38 int main (int argc , char ∗argv [])

39 {
40 try {
41 // i n i t i a l i z e component ’ s i n t e r n a l i n f r a s t r u c t u r e

42 CHS : : SmartComponent comp(”StateDemoComponent ” , argc , argv) ;

43

44 // i n i t i a l i z e s t a t e−change hand ler and s t a t e−s l a v e
45 MyStateChangeHandler s t a t e hand l e r ;

46 CHS : : S tateS lave s t a t e (&comp , s t a t e hand l e r) ;

47

48 // con f i gu r e and a c t i v a t e the s t a t e−s l a v e
49 s t a t e . d e f i n eS t a t e s (”Active ” , ”a c t i v e ”) ;

50 s t a t e . s e tUp In i t i a l S t a t e (”Active ”) ;

51 s t a t e . a c t i v a t e () ;

52

53 // component s p e c i f i c i n i t i a l i z a t i o n comes here

54 MyIn i t i a l i z a t i onTask i n i t (& s t a t e) ;

55 i n i t . s t a r t () ;

56

57 // sw i t ch gener i c s t a t e automaton in t o the A l i ve mainstate

58 s t a t e . setWaitState (”Al ive ”) ;

59 // s t a r t event hand l ing (o f the i n t e r n a l Reactor)

60 comp . run () ;

61 } catch (std : : except ion &ex) {
62 std : : cout << ex . what () << std : : endl ;

63 } catch (. . .) {
64 std : : c e r r << ”Uncaught except ion . . . ” << std : : endl ;

65 }
66

67 return 0 ;

68 }

Listing 4.1: Name Request Reply.h

The example in listing 4.1 consists of the following parts. The class MyStateChangeHan-

dler (line 10) implements a simple version of a state-change-handler with the two callback

methods, which simply prints out the currently activated and deactivated substates on stan-

dard output. The class MyInitializationTask (line 21) defines a task which is responsible

21

to initialize component’s internal resources. This tasks uses the state pattern to lock the

substate Init as long as the initialization procedure lasts. Finally, the main method demon-

strates the usage of a component in SmartSoft including the initialization of a StateSlave

port.

The internal details of the initialization procedure (lines 42-60) are illustrated in the figure

3.4 and are described in section 3.4. By creating an instance of a SmartComponent class (line

42) the internal infrastructure of a component (i.e. including the connection to a naming-

service) is initialized. In lines 45-46 an instance of the state-change-handler implementation

is created and passed as reference, together with a reference to the SmartComponent instance,

to the constructor of the StateSlave class. Thus, the StateSlave becomes a service of the

component and calls the callback methods of MyStateChangeHandler.

Next, the StateSlave is parametrised individually for the example component (lines 49-

51). In this case, a single user-defined mainstate Active with the substate active is defined.

Thus, the component’s individual state automaton consists of the mainstates Active (includ-

ing the substates active and nonneutral) and Neutral (including the substate neutral).

Optionally, the method setUpInitialState can be used to predefine the mainstate which is

automatically activated after the StateSlave has successfully performed the Alive command

(line 58). The internal handling of state-change-requests in the StateSlave is activated by

the activate method (line 51).

The lines 52-56 are a suitable place to initialize all internal resources of a component.

These resources are, for example, hardware drivers, software libraries, user-defined tasks,

communication ports, etc. The initialization of these resources is best executed in one or

several separate task(s) as demonstrated in the class MyInitializationTask (lines 21-36).

The advantage of this separation is that the main method is kept very generic and can be

completelly generated from a component model (i.e. in the MDSD Toolchain [3, section 5]).

In line 55 the initialization task is started. This call returns immediately after the internal

thread of the task is started. The initialization task locks the substate init and holds it as long

as necessary to initialize all component’s resources. The call state.setWaitState("Alive")

(line 58) blocks the calling thread (in this case the main thread) till the substate init is

released. Finally, if the state changes into the mainstate Alive (resp. switches further into

the mainstate Active) this method unblocks and the run method (line 60) starts the internal

handling of events in the component.

The demonstrated structure is not static, but can be modified according to component

specific requirements. For example, the call state.setWaitState("Alive") (line 58) can be

placed inside of one of the component’s internal coordination threads or any other reasonable

place inside of the component. A catch of the exception in line 62 can be interpreted as fatal

error and thus the StateSlave can be commanded to switch into the mainstate FatalError.

This can be reached by calling state.setWaitState("FatalError").

22 CHAPTER 4. APPLICATION EXAMPLE FOR THE STATE AUTOMATON USAGE

Appendix A

Concept slides for a generic state

automaton in a component

The concept for a generic state automaton is originally described in full length in the set

of slides (attached in the following). This set of slides is structured in three parts. In the

first part, the state automaton of RT-Middleware is presented as a case survey. This state

automaton implements the RTC1 standard by OMG. The state automaton is adjusted to

the needs from typical use-cases in SmartSoft. As a result a concept for a generic state

automaton is presented in the second part. The generic state automaton can be used on the

component and the task level. In the third part, the integration of the component’s generic

state automaton into the state pattern of SmartSoft is presented. Additionally, a concept

for the integration of an external state chart into the generic state automaton is shown.

1http://www.omg.org/spec/RTC/1.0/

23

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

A Generic State Automaton for a
Service Robotic Component

M.Sc. Alex Lotz, M.Sc. Andreas Steck and Prof. Dr. Christian Schlegel

February 2010

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Overview

1 Introduction
Survey
RT-Middleware and OpenRTM

2 Concept of a generic state automaton in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

3 Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Lotz, Steck, Schlegel A Generic State Automaton for a Component

24 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

Outline

1 Introduction
Survey
RT-Middleware and OpenRTM

2 Concept of a generic state automaton in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

3 Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

Introduction
A concept check questions 1

Which internal structures are needed inside a component?

Which structure and which states are needed by the state
automaton to coordinate a component’s lifecycle and activities?

How do we describe states? Do we need different
representations for (technical) functionality and business logic
(e.g. scripting-languages for business logic)?

How is the interaction between communication patterns and the
state automaton in a component? Do we need to consider
blocking method calls and do we need to release them when
requesting state changes?

Lotz, Steck, Schlegel A Generic State Automaton for a Component

25

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

Introduction
A concept check questions 2

What is the appropriate level of insight into the
component-internal state automaton from the outside (e.g. what
level of detail about the state of a component is reasonable)?

Which kind of functionality is required to properly start and stop
components and even the overall system?

Which generic interfaces/ports (e.g. configuration, status queries,
etc.) need to be provided at a component?

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

Outline

1 Introduction
Survey
RT-Middleware and OpenRTM

2 Concept of a generic state automaton in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

3 Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Lotz, Steck, Schlegel A Generic State Automaton for a Component

26 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

Case Survey: Robot Technology (RT) - OMG
Overview

1 2

Links to RT-Middleware and - RTC specification

OMG - RT Component Specification: http://www.omg.org/spec/RTC/1.0/

RT-Middleware (OpenRTM-aist): http://www.openrtm.org/OpenRTM-aist/html-en/

National Institute of AIST: http://www.aist.go.jp/

1http://www.openrtm.org/
2http://www.omg.org/

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Terminology

Basic Concepts:

Component Profile: meta information of a component (component
description, communication ports, etc.)

Activity: denotes a state automaton that executes an algorithm in
its onExecute method

Execution Context: abstract expression of a thread – strict separation
between execution of an algorithm and the
corresponding business logic

RT-Component: a module which implements the business logic,
specifies the lifecycle and define the used ports and
services

Lotz, Steck, Schlegel A Generic State Automaton for a Component

27

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Parts of a component 1

3

3Figure reference:
http://www.openrtm.org/OpenRTM-aist/html-en/Documents2FRT-Middleware20Overview.html

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Parts of a component 2

Each component posses a uniform interface:

Configuration Interface: to modify parameters from outside the
component at runtime

RTC Interface: to trigger and poll the state automaton

RTCEx Interface: to manage the execution context

User-defined communication can b e implemented via:

Data Ports: Communication for simple data types (Data-Flow Port)

Service Ports: RPC interface based on CORBA

Lotz, Steck, Schlegel A Generic State Automaton for a Component

28 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Configuration Interface 1

Screenshot illustrates
initialization of parameters and
according tags

Attached documentation fields
give further hints on the
parameter’s semantics

These parameters can be
modified at runtime via the
configuration interface

Problem: Only basic data types
are allowed

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Configuration Interface 2

Basis data types are not sufficient as parameters (see examples
for parameters on slide 80)

Mapping of composite data structures onto several commands
with basic data types is not an atomic operation. It is difficult to
command consistent configuration sets.

In addition to a configuration interface a generic command
interface is needed, which must be manually implemented by
using service ports.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

29

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Configuration Interface 3

In some cases parameters of the same type must be collected in
a FIFO queue to consecutively execute them in a component
(e.g. several goal regions in a planner component), which is not
possible in OpenRTM.

Advantage of simplified approach: the direct mapping of
parameters on internal variables in a component allows to simply
request for changes of these variables through the same
configuration interface

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Basic idea behind Execution Context and RT-Component 1

The Execution Context supports the separation of the business logic
and worker thread4.

This allows to execute these business logic blocks in different
arrangements, either sequentially or concurrently depending on
assignment and parametrisation of execution contexts.

Realtime processing is achieved by sequential execution of several
business logic blocks [ASKK05] (cyclic executive).

Problem: Realtime scheduling strategies are being ignored (like
rate monotonic scheduling, or earliest deadline first)

4Reference: http://www.omg.org/spec/RTC/1.0/ on pages 22-23
Lotz, Steck, Schlegel A Generic State Automaton for a Component

30 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Basic idea behind Execution Context and RT-Component 2

The synchronization of several components is only possible by
sequential execution in a single execution context.

By contrast, in SMARTSOFT the synchronization is realized by
communication patterns (compare getUpdateWait() for
example).

In general, an RT-Component participates with different execution
contexts, implements the onExecute method an specify its lifecycle.

At a certain point in time an execution context belongs to one particular
component, but is able to call several onExecute methods from
corresponding component-participants.

An execution context can be configured either as periodic (with a
certain period) or sporadic (full load) and additionally can be started
and stopped from the outside.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
State Automaton in a RT-Component 1

5

5Figure reference:
www.openrtm.org/OpenRTM-aist/html-en/Documents2FProgramming20RT-Component.html

Lotz, Steck, Schlegel A Generic State Automaton for a Component

31

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
State Automaton in a RT-Component 2

The state automaton in RT-Middleware combines the RT-Component
with one particular execution context inside of the state Alive.

An RT-Component is at first passive and becomes active by
participating in an execution context.

The state automaton in the lower region of the Alive state is
implemented in a RT-Component.

The state automaton in the upper region of the Alive state is either
linked to an owned or external execution context.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
State Automaton in a RT-Component 3

Each RT-Component implements business logic inside of its
onExecute method.

The method onExecute is triggered only if the RT-Component
is in its Alive state and a corresponding execution context is in its
Running state.

Both states can be commanded at runtime form the outside of a
component through the generic RTC interface of the component.

At runtime the method onExecute is triggered as a callback
function from a corresponding execution context.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

32 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Composite Components 1

On the left is a shared execution context between two components, in
the middle a simple component with one execution context and on the
right a group of components each using a separate execution context.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Composite Components 2

combination of several
components in a group

Lotz, Steck, Schlegel A Generic State Automaton for a Component

33

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Composite Components 3

Each RT-Component defines an own state automaton with one
onExecute method.

An execution context executes either one particular component or is
shared by several components (ECShared). Thereby, the compoonents
are executed in a sequence.

Grouped components are not allowed to share memory, but must
communicate through data and service ports.

The group of components is not allowed to define own communication
ports, but must publish already available ports from components in its
internal group.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Mapper Example from SMARTSOFT

Two independent tasks calculate
the longterm, resp. the current
map

The two tasks must share
internal resources (like shared
set of parameters, internal data
structures for the current map
which is used to calculate the
longterm map, etc.)

The two tasks must be activated
and deactivated independently.

SmartMapperGridMap

LtmMapTask

CurMapTask

LtmQueryHandler

CurQueryHandler

ParameterHandler

StateChangeHandler

la
s
e
rC
li
e
n
t

pa
ra
m
Se
rv
er

cu
rP
us
hS
er
ve
r

ltm
Q
ue
ry
Se
rv
er

cu
rQ
ue
ry
Se
rv
er

st
at
eS
er
ve
r

In the following some possible solutions are presented and evaluated which
result from eMail contact with a RT-Middleware maintainer.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

34 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Mapper Example - First Suggestion

”Implement your component so that it calculates the long-term map
first, outputs it, then calculates the current map based on the long-term
map, and outputs that. Do all this in sequence in onExecute().”
(suggested by RT-Middleware maintainer, personal eMail communication)

Resulting problems:

Execution of the LTMap and CurrentMap are not independent of each
other.

Thus, a separate execution frequency is not possible.

It is not possible to activate and deactivate LTMap and CurrentMap
independent of each other.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Mapper Example - Second Suggestion

”Create two separate components, one creating the long-term
map and one creating the current map. Give the long-term map
component a service port to access the information necessary for
the current map, and make the current map component use it.
Put them into a composite component with only the map outputs
exposed.” (suggested by RT-Middleware maintainer, personal eMail
communication)

”Same as above, but use a pull-based data port to pull the latest
long-term map information from the current map component.”
(suggested by RT-Middleware maintainer, personal eMail
communication)

Lotz, Steck, Schlegel A Generic State Automaton for a Component

35

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Mapper Example - Second Suggestion

design and model problems

Duplicated port for Laser Scans

Internal communication inefficient
over network

Parametrization spread over two
components (synchronization
problem)

No separation between internal and
external views (public/private)

Synchronized reception of data must
be error prone programmed using
condition variables

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Mapper Example - Third Suggestion

”Use your own threads internally within a single component, one for
the long-term map and one for the short-term map. onExecute() would
talk to these threads to get the latest data to output each time it gets
called.” (suggested by RT-Middleware maintainer, personal eMail
communication)

Resulting problems:

The framework is circumvented

Thread is hidden from the outside of a component

The concept of execution contexts is ignored

Thread is not controlled by the state automaton (or the control must be
error prone implemented)

Lotz, Steck, Schlegel A Generic State Automaton for a Component

36 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Additional recurring issues

Each execution context can be directly controlled from the
outside. It is not possible to hide execution contexts to reduce the
overall complexity. Thus, a user needs deep knowledge about
internal system structures to know when which execution
contexts are allowed to be activated or not.

Active handlers for consecutively execution of requests (like
SmartProcessing patterns in SMARTSOFT) are missing and must
be error prone, manually implemented.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

RT-Middleware
Additional recurring issues

Event mechanisms (like Event Pattern in SMARTSOFT) must be
emulated (costly, time-consuming, error prone)

Interactions between the state automaton and data/servcie ports
are not considered and must be emulated.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

37

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

Lesions
Conceptual Problems 1

The separation of business logic and execution thread leads to
fine grained components. This resembles active classes and
does not reduce the overall complexity in a system.

The resulting components are tightly specialized on the individual
usage in a certain system and are difficult to reuse in other
(different) systems.

Separation of internal and external views is not possible.

Communication mechanisms are too generic. Certain
communication pattern semantic must be emulated on top of
these mechanisms.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

Lesions
Conceptual Problems 2

Several use cases in robotics require the execution of several
tasks in a component, which is not directly possible in
RT-Middleware and must be implemented as:

Composite components (no internal shared memory possible)
Several execution contexts in a single component. Inside of
onExecute an ec_id must be evaluated to decide which
execution context is currently active, for example:
if(ec_id == 1) do A;
else if(ec_id == 2) do B;

Lotz, Steck, Schlegel A Generic State Automaton for a Component

38 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Survey
RT-Middleware and OpenRTM

Lesions
Problems in the Toolchain and the implementation

Eclipse based Toolchain

no proper model used for code generation (just a GUI formular based
approach)

no proper code generation but a simple comment in and out of in a
static code structure

after a further generation run, the sources must be merged by a
merge-tool

OpenRTM implementation

No abstraction level to hide CORBA details in service ports

semantic of communication ports way too simple

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Outline

1 Introduction
Survey
RT-Middleware and OpenRTM

2 Concept of a generic state automaton in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

3 Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Lotz, Steck, Schlegel A Generic State Automaton for a Component

39

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Parts of a Component in SMARTSOFT

Init

<<Component>>

Alive

Shutdown

Fatal Error
Send

Query

Wiring

etc.Event

User Space

Threads / Mutex / Timer
Interface Execution Environment

User Space

stable interface
towards user−code

components
towards other
stable interface

Push

Middleware OS

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Parts of a Component in SMARTSOFT

State Automaton: Provides generic base states of a component (Init, Alive,
Shutdown and FatalError). These states are traversed during
execution of a component. Inside of Alive state the user can
define own component specific states.

Service Ports: Implements the communication patterns of SMARTSOFT.
They are used for communication between components as
well as for orchestration of components from the sequencing
layer

Tasks: Allows to implement concurrent activities in a component.

OS Abstraction: Mutex, Condition Variable, Semaphore, etc.

User-Code: Code part implemented by component developer (can
contain arbitrary libraries)

Lotz, Steck, Schlegel A Generic State Automaton for a Component

40 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Overview for the State Automaton Concept

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Outline

1 Introduction
Survey
RT-Middleware and OpenRTM

2 Concept of a generic state automaton in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

3 Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Lotz, Steck, Schlegel A Generic State Automaton for a Component

41

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Concept overview for states in a SmartTask

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

SmartTasks in SMARTSOFT
Overview

SmartTasks allow to realize concurrent execution inside of
components.

A SmartTask traverses the states Init, Alive and Shutdown during
its lifetime. Occurrences of critical (locally not solvable) errors can
be outlined by the state FatalError.

The current state of a SmartTask can be accessed and evaluated
in a component.

The handlers of communication patterns can use the state in their
execution.

Explicated states are the basis for Monitoring and Introspection.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

42 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

States in a SmartTask
Semantics of the states in a SmartTask 1

1 Init: A task is prepaired for its execution.
Required resources are initialized here.

2 Alive: A tasks is fully initialized and is ready to
execute.

3 Shutdown: Clean up procedures that are
executed on shutdown of a task.

4 FatalError: This states indicates critical errors in
a SmartTask that are not solvable by regular
error handling strategies locally inside of the
task. The task can be only stopped or restarted
from here.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

States in a SmartTask
Semantics of the states in a SmartTask 2

The states of a task are realized inside of the class SmartTask. Member
functions provide access to the states (to modify and read them).

All four states can be read from the outside the task (within a
component) as well as from the inside the task by using public member
methods of the class SmartTask.

During the creation of a SmartTask the state Init is set as the first state
per default. The states Alive, Shutdown and FatalError are only allowed
to be modified from within the task itself by using protected member
functions of the class SmartTask.

A component developer is able to define the points, where the state
changes are triggered, according to his needs. This enables a
component developer, for example, to exactly define when the internal
resources of a task are fully initialized and the task is thus ready to
execute (by switching into the state Alive).

Lotz, Steck, Schlegel A Generic State Automaton for a Component

43

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

States in a SmartTask
Relation between a task and its transitions 1

A SmartTask provides the methods start() and stop() to
respectively start and stop the internal activity of the task (even multiple
times as long as the task is in its Alive state).

The execution of a task can be started first after its initialization is
completed.

Therefore the method start(), for example, can check whether the
task is in its Alive state and only in this case start the internal activity.

The state change into the state Alive can be triggered either from the
constructor of the derived class or from an other arbitrary point in the
implementation of the derived class.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

States in a SmartTask
Relation between a task and its transitions 2

The activity of a task is stopped by calling the stop() method. The
task remains to be in the Alive state.

If however the resources of a task are cleaned up, the task must switch
into the state Shutdown. This ensures that the task is not started again
without the initialized resources of this task.

If the task is switched into the FatalError state, its resources remain
allocated. The activity of the task is stopped and the task is not able to
start again. The only escape is to switch into Shutdown state and to
clean up task’s resources.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

44 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

States in a SmartTask
Overview for all possible transitions between states of a SmartTask

The transitions between states are performed according to the following
table. Forbidden transitions are prevented by returning a corresponding
return value in the member functions of a SmartTask.

target state
current Init Alive Shutdown FatalError
state
Init - X - X
Alive - - X X
Shutdown - - - -
FatalError - - X -

Keys:

[X]: Transition is
allowed

[-]: Transition is not
allowed

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

States in a SmartTask
Interactions between the states in a SmartTask and Communication Patterns in SMARTSOFT

Handlers of Communication Patterns:
In the implementation of the handlers the current state of a
SmartTask can be evaluated to implement corresponding handler
behavior.

Example: In a query handler the current state of a task can be
evaluated such, that the handler returns a valid answer only in the
case when the state equals Alive. Otherwise a valid flag (e.g.
is_valid=false) in the answer communication object is set
to false.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

45

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

States in a SmartTask
Difference between a regular error and a fatal error in a SmartTask

Regular Error: Is a deviation from a regular execution in a component, which
can be resolved locally and is not critical for the overall execution of the task.

Example: If the path planning component does not find a path due to
occupied target region, a corresponding (regular) flag in a
communication object is set. This enables a CDL component to
recognise this situation and react in a reasonable way. The planner task
can continue to execute (without stopping its internal activity) and thus
remains in its Alive state.

Fatal Error: Is a critical error at runtime, which can not be solved in the task
and prevents the task from continuing its execution. In this case the task is
switched into the FatalError state. If the task is additionally critical for the
overall execution of its component, the component as well is switched into the
FatalError state (as presented later).

Example: A fatal erro in a GUI task is not critical for a component and
affects only the task.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Outline

1 Introduction
Survey
RT-Middleware and OpenRTM

2 Concept of a generic state automaton in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

3 Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Lotz, Steck, Schlegel A Generic State Automaton for a Component

46 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Generic State Automaton in a Component
Concept overview

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Generic State Automaton in a Component
Concept overview

A generic state automaton in a component explicates the
lyfecycle of this component by the four base states Init, Alive,
Shutdown and FatalError.

This state automaton is included into the State Pattern of
SMARTSOFT.

Inside of the state Alive further user-defined states can be
defined. Even an integration of an external state-chart (e.g. from
IAR VisualState) is possible.

In general, a state automaton allows to activate / deactivate
different behaviors of a component, by indirectly activating and
deactivating corresponding tasks.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

47

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Generic State Automaton in a Component
Semantics of the four base states

Init: A component is prepared for its execution.
Thereby the infrastructure and the resources of
the component are initialized.

Alive: Is a pseudo state (and a placeholder for a
user-defined state automaton) that indicates a
running component.

Shutdown: A component is in process of
shutdown, where all resources are freed.

FatalError: Is a critical error, which is not
solvable locally in the component. This state can
be resolved only by restarting the component.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Generic State Automaton in a Component
Semantics for the transitions between the four base states 1

Init -> Alive: This transition is triggered from
within the component by a local method call.
This enables a component developer to exactly
define the point in time when the initialization of
a component is completed.

Init -> FatalError: If the initialization fails due to
an unsolvable error, which prevent the
component to continue its initialisation
procedure, the component can be switched into
the FatalError state by a local method call.

Init -> Shutdown: The shutdown of a
component can be triggered from the outside of
a component as well as from within a
component.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

48 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Generic State Automaton in a Component
Semantics for the transitions between the four base states 1

Example presented on a source code level:

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Generic State Automaton in a Component
Semantics for the transitions between the four base states 2

Alive -> FatalError: A critical error at runtime,
that prevents a component to further provide its
service, the component can be set into the
FatalError state by a local method call.

Alive -> Shutdown: A component can be
commanded to shutdown by switching into the
state Shutdown. This can be triggered either
from the outside or from within a component
(e.g. by catching the SIGINT signal).

Lotz, Steck, Schlegel A Generic State Automaton for a Component

49

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Generic State Automaton in a Component
Semantics for the transitions between the four base states 3

FatalError -> Shutdown: A component being in
the FatalError state is not able to resolve this
problem locally. Thus, the component requires
help from a higher level (outside of this
component). The only way to escape this state is
to switch into the state Shutdown (e.g. triggered
by a scenario coordination component on the
sequencing layer). Again, an error which can be
resolved by a regular error handling strategy
locally in the component must be solved locally
and does not result in a FatalError state. A fatal
error is, for example, if the communication basis
of a component crashes down.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The State Pattern in SMARTSOFT
Overview

The State Pattern [Sch04] in SMARTSOFT implements a master-slave
relationship.

The State Pattern provides a generic interface on a component to set
the component into different modes (the mainstates) from the outside in
a generic way.

By evaluating the internal states (the substates) inside a component,
the internal tasks of the component can be activated and deactivated.

A mainstate is a mask for a valid combination of substates. Both state
types are defined during design time of a component.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

50 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The State Pattern in SMARTSOFT
Master-slave relationship 1

State Slave
A slave provides an interface to the outside of a component to be
able to set the component into different modes (mainstates).

A task in a component can lock a substate by calling the
acquire() method from the slave and respectively unlock a
substate by calling its method release().

This protects tasks to be interrupted at unsuitable points of
execution.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The State Pattern in SMARTSOFT
Master-slave relationship 2

State Master
Is used to command state changes in a state slave.

A synchronous call from the state master ensures that the state
slave successfully completes a state-change-request.

A state-change can be performed only after all locked substates
(which are affected by this state-change) are released.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

51

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The State Pattern in SMARTSOFT
The concept of mainstates and substates

A mainstate contains
several substates

A state master
commands only
mainstates

A state slave
provides substates
within a component

At a certain point in time only one mainstate can be active. If a
mainstate is activated, its substates are activated as well. In case
substates are contained in the current and the new mainstate during a
state-change, these substates remain active and are not affected by the
state-change. Substates, which are not included in the new mainstate
are deactivated.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The State Pattern in SMARTSOFT
Properties of the State Pattern 1

A change to any valid mainstate is allowed (independent of the
previous mainstate). A mainstate is some kind of a mask for a
valid combination of substates.

A state-change can be completed only if all substates, which are
not included in the next mainstate, are unlocked. Substates which
are contained in both mainstates must not be unlocked.

This ensures that all corresponding activities are in a safe mode
where a state-change can be performed without negative
impacts.

During a state-change, all substates which are not included in the
next mainstate, can not be locked again (after a release is called).

Lotz, Steck, Schlegel A Generic State Automaton for a Component

52 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The State Pattern in SMARTSOFT
Properties of the State Pattern 2

A state-change into the mainstate Neutral (and only Neutral) can be
instantly enforced by the special command deactivate. Thereby, all
blocking calls in a component, which are caused by pending requests
on communication patterns (e.g. getUpdateWait(...)) are
instantly unblocked. This enables all tasks to release the corresponding
substates as fast as possible.

For each activated substate the callback method
handleEnterState of the StateChangeHandler is called. For
each deactivated substate the callback method handleQuitState
of the StateChangeHandler is called.

These callback methods allows to acquire / release resources,
connect / disconnect service requestors, open / close files, etc.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The State Pattern in SMARTSOFT
Properties of the State Pattern 3

The mainstate Neutral containing the substate neutral is
automatically available from the beginning in the state pattern.

State pattern user can define individual mainstates, each with a
separate combination of substates.

Each user-defined mainstate automatically contains the substate
nonneutral. This allows to start activities as soon as the mainstate
Neutral is deactivated (independent of the next mainstate).

Lotz, Steck, Schlegel A Generic State Automaton for a Component

53

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The State Pattern in SMARTSOFT
Conclusion

In contrast to a finite state machine (where state-changes are triggered
by corresponding events), the state pattern enables a developer to
command any valid mainstate in a simple way.

Thus, the focus is not on the state-changes itself (as it is for
example by StateCharts), but to activate and deactivate tasks in a
component in a simple and reusable way.

The mainstate mask hides the combination of substates and thus hides
the realisation of a mainstate. A component developer can even change
the internal behavior of a component (e.g. during its development) by
adding/removing substates to/from a certain mainstate, without
affecting the orchestration of the mainstates by a state master.

Hence, the state master can safely command all valid mainstates
without the need to know which substates are allowed to be active at
certain points in time.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Integration into the State Pattern in SMARTSOFT

=>

MainState

SubState

Pseudostate

Lotz, Steck, Schlegel A Generic State Automaton for a Component

54 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Integration into the State Pattern in SMARTSOFT

The four base states of the generic state automaton are
implemented as mainstates in the state pattern in SMARTSOFT.
These mainstates are available from the beginning in the state
slave.

The mainstates Init, FatalError and Shutdown consist of exactly
one substate with the same name (except the first letter, which is
changed to a lowercase letter).

The integration of the generic states into the state pattern
facilitates a uniform way to request and command states from the
generic and the user-defined state automatons.

The mainstate Alive is a pseudo state and a placeholder for the
user-defined state automaton in the state pattern.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Example for the combination of the generic and a simple user-defined state automatons

Lotz, Steck, Schlegel A Generic State Automaton for a Component

55

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Example for the combination of the generic and a simple user-defined state automatons

A developer has to define at least one mainstate (which
automatically obtains the substate nonneutral).

If the name for this mainstate is not needed to be specific, it is
recommended to call it Active.

A component being in the mainstate Neutral behaves as passive
as possible (see next slide).

A component developer specifies which mainstate is initially
chosen after the mainstate Alive is commanded. Per default the
initial mainstate is Neutral.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Guiding rules for the semantics in the mainstate Neutral

In the mainstate Neutral:

. . . a component does not use services from other components
(client ports are disconnected or unsubscribed)

. . . a component does not require much CPU time (tasks block on
corresponding substate locks)

. . . the client ports of a component can be safely rewired (e.g. by
using the Dynamic Wiring pattern)

. . . the component can be safely reconfigured (new parameters
can be set)

Lotz, Steck, Schlegel A Generic State Automaton for a Component

56 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Guiding rules for the semantics in the mainstate Neutral

In the mainstate Neutral:

. . . the server ports behave as follows:

Query: requests are answered with an empty message
(containing the flag is_valid=false)
Send: is executed as before (because no reply is available)
PushNewest and Event: Do not publish anything (tasks are
blocked on substates)
PushTimed: its method stop() halts the service and all
connected clients are informed about this with the return value
”SMART_NOTACTIVATED”
State and Wiring: are fully functional
Parameter: can be used as before

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Guiding rules for the semantics in the mainstate Init

In the mainstate Init:

As long as the component is in its Init state the service ports of
this component are not able to provide reliable service. Thus, a
remote component con only rely on the service after a
component has switched into the Alive state.

Even if the service ports in a component are fully initialized (after
the call component.run()), the component can still delay the
switch into the Alive state (e.g. to wait till the internal SICK laser
device driver has fully established a serial connection)

Lotz, Steck, Schlegel A Generic State Automaton for a Component

57

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Guiding rules for the semantics in the mainstate Shutdown

In the mainstate Shutdown:

. . . a component commands all its internal tasks to cooperatively
shutdown.

. . . all service ports of this component are deleted and cleaned up

. . . the component’s internal infrastructure is cleaned up

. . . the component leaves its execution context

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Example: State Automaton in the Mapper Component

Lotz, Steck, Schlegel A Generic State Automaton for a Component

58 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Internal and External View

Outside of a component all mainstates are
visible, those from the generic and those
from the user-defined state automaton.

A state master is only allowed to command
the mainstates Neutral, Shutdown and the
user-defined mainstates.

The mainstate Init is automatically set
as the very first mainstate and thus can
not be set from outside a component.
The mainstate FatalError is only
identifiable inside a component and
can thus be only set from within a
component.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Internal and External View

Pseudostate Alive

State-changes between user-defined
mainstates and the mainstate Neutral can not
be commanded from within a component, but
only from a remote state master. This defines
clear responsibilities for the state master.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

59

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Internal and External View

Mainstate FatalError and Shutdown
It is not reasonable to set a FatalError
mainstate outside a component, because if a
component is identified to be faulty (e.g. by a
monitoring component) it can be directly
commanded to shutdown without the
intermediate FatalError mainstate. Also, if the
component is already in the FatalError state,
the only reasonable way to resolve this is to
shutdown a component from the outside by a
state master.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Overview of all allowed transitions

Target state
Current Init Alive Neutral User- FatalError Shutdown
state defined
Init -/- I/- -/- -/- I/- I/E
Alive -/- I/- predef./- predef./- I/- I/E
Neutral -/- -/- -/E -/E I/- I/E
User-defined -/- -/- -/E -/E I/- I/E
FatalError -/- -/- -/- -/- I/- I/E
Shutdown -/- -/- -/- -/- -/- I/E

[I]: Transition allowed to be set (internally) within a component

[predef.] Transition is predefined by the user during initialisation

[E]: Transition allowed to be set externally by a state master

[-]: Transition is not allowed

Lotz, Steck, Schlegel A Generic State Automaton for a Component

60 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

The Generic State Automaton in a Component
Relationship between communication patterns and the state automaton

In the implementation of the handlers from communication
patterns a substate can be checked without blocking by using the
method tryAcquire(...) and the handler can behave
according to the results.
For example:

A current map is requested from a mapper component by using its
query server port: If the mapper is currently deactivated (which
can be checked by calling tryAcquire(“neutral”)), the
handler from the query server can answer an empty map with the
flag is_valid=false.
As long as the mapper component is in the mainstate Neutral,
parameters of this component are allowed to be changed (e.g. the
size for the current map can be only changed if no task currently
tries to update the map).

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Integration of a StateChart (1st case with tight coupling)
A StateChart inside of a SmartTasks using a substate

Example: Include an external StateMachine from IAR VisualState

Lotz, Steck, Schlegel A Generic State Automaton for a Component

61

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Integration of a StateChart (1st case with tight coupling)
A StateChart inside of a SmartTasks using a substate

The state chart from IAR Visual State is included into a
SmartTask.

Each SmartTask can include its own state chart.

By deactivating a certain substate, the state-machine from a
corresponding state-chart is frozen.

This is reasonable for cases, where the state chart is only used
for internal execution inside the task (e.g. a certain algorithm
implemented as a state chart).

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Integration of a StateChart (2nd case with lose coupling)
Connecting substates with states from a StateChart

Lotz, Steck, Schlegel A Generic State Automaton for a Component

62 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

Integration of a StateChart (2nd case with lose coupling)
Connecting substates with states from a StateChart

Again, the state machine is included in a SmartTask, however a
substate is not used this time.

Each state-change (indicated in a state-change-handler of the
state pattern) is forwarded to the state machine of the state chart.

Thereby, the substates must be mapped onto corresponding
events from the state chart and must be pushed onto the Event
Queue.

The state chart individually reacts on these events.

Example

Behavior coordination implemented as a StateChart.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Outline

1 Introduction
Survey
RT-Middleware and OpenRTM

2 Concept of a generic state automaton in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

3 Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Lotz, Steck, Schlegel A Generic State Automaton for a Component

63

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Parameter Port in SMARTSOFT
Overview

A parameter port provides a generic way to send strategies,
parameters, configuration and commands to a component.
Therefore, component specific communication objects are used.

Specific setter and getter methods allow for appropriate individual
checks of the syntax.
The parameter communication objects provide setter methods for
strings, based on a Lisp like syntax (see examples in the following)

This allows for automatic filling of the complex composite data
types.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Parameter Port in SMARTSOFT
Examples

Example for CDL parameters

Set the permitted velocity range [-200 800] mm/s
transvel(-200)(800)

Set the CDL strategy to drive reactive / to follow a person
strategy(reactive)
strategy(followMe)

Example for Planner parameters

Delete all currently parametrized destination goals
deletegoal

Add new circled goal regions
setdestinationcircle(2000)(1000)(200)
x = 2000 mm; y = 1000 mm; Radius = 200 mm

Lotz, Steck, Schlegel A Generic State Automaton for a Component

64 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Parameter Port in SMARTSOFT
Further examples

Example for Speech parameters

Change the grammar of the speech recognition
setgrammer(”followMe.grxml”)

Example for Mapper parameters

Set the region of interest in the current map
currparameter(10000)(20000)(-2000)(3000)
xSize = 10000 mm; ySize = 20000 mm;
xOffset = -2000 mm; yOffset = 3000;

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Outline

1 Introduction
Survey
RT-Middleware and OpenRTM

2 Concept of a generic state automaton in SMARTSOFT

Internal structure of a component in SMARTSOFT

SmartTasks in SMARTSOFT

Generic state automaton

3 Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Lotz, Steck, Schlegel A Generic State Automaton for a Component

65

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Status Port in SMARTSOFT

Collect and Observe states in single components

A status port provides a generic interface to access data for
introspection

States can be used in monitoring components to administrate
and observe a running system

Further details are part of the masters thesis from Alex Lotz
(coming soon)

Lotz, Steck, Schlegel A Generic State Automaton for a Component

Introduction
Concept of a generic state automaton in SMARTSOFT

Parameter- and Status-Port in SMARTSOFT

Parameter Port
Status Port

Bibliography

N. Ando, T. Suehiro, K. Kitagaki, and T. Kotoku.

Composite component framework for RT-middleware (robot technology
middleware).

Proceedings, 2005 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics., pages 1330–1335, 2005.

Christian Schlegel.

Navigation and Execution for Mobile Robots in Dynamic Environments:
An Integrated Approach.

Phd, Ulm, 2004.

Lotz, Steck, Schlegel A Generic State Automaton for a Component

66 APPENDIX A. GENERIC STATE AUTOMATON – CONCEPT SLIDES

Bibliography

[1] Christian Schlegel. Navigation and execution for mobile robots in dynamic environments:

An integrated approach. Phd thesis, University of Ulm, 2004.

[2] Christian Schlegel and Alex Lotz. ACE/SmartSoft – Technical Details and Internals.

Technical Report 2010/01, University of Applied Sciences Ulm, Oktober 2010.

[3] Christian Schlegel, Andreas Steck, and Alex Lotz. Model-Driven Software Development

in Robotics: Communication Patterns as Key for a Robotics Component Model. In

Introduction to Modern Robotics, chapter 28. iConcept Press Ltd, 2011. (coming soon).

67

Investition in Ihre Zukunft
gefördert durch die Europäische Union Europäischer Fonds

für regionale Entwicklung
und das Land

Baden-Württemberg

Berichte des ZAFH Servicerobotik
ISSN 1868-3452

Herausgeber:
ZAFH Servicerobotik

Hochschule Ulm
D-89075 Ulm

http://www.zafh-servicerobotik.de/

