Bearing Only SLAM based on SIFT-features in Omnicam Images

SLAM for Service Robots

SLAM (simultaneous localization and mapping) mechanisms are a key component towards advanced service robotics applications. Currently, a major hurdle are the still high costs of suitable range measuring devices. A solution are bearing-only SLAM approaches since these can be used with cheap sensors like omnicams.

The general approach of using an Extended Kalman Filter (EKF) for bearing-only SLAM based on artificial landmarks has been described and evaluated earlier. Instead of artificial landmarks, we now use SIFT features as natural landmarks.

This work describes SIFT feature preselection and landmark identification mechanisms that are pivotal towards the robust application of SIFT features within a bearing-only SLAM approach based on the EKF. We exploit viewing areas to massively reduce ambiguities and mismatches in SIFT feature reobservations and thus significantly reduce false identifier assignments.

The Key Idea

- Delayed landmark initialization for EKF integration
- Manage observation poses of uninitialized landmarks by EKF to ensure consistency among observation poses
- Probabilistic observation model extracts viewing angle of a landmark from omnicam image
- Initialize a landmark by intersecting at least two half-lines using a probabilistic error propagation model
- Vertical features are unaffected by mirror curvature
- Merge everything by EKF

Method

The Extended EKF State Vector

\[x = [x_v^T, x_v^T, ..., x_v^T, x_f^T, ..., x_f^T]^T \]

Multiple observations of the same landmark are the basis for both, the delayed initialization of a new landmark and the reobservation of an already observed landmark.

Results

The overall processing scheme.

The environment used for the experiments.

The sensing steps 5, 9, 35, 40, 52, 53 and 54 of a 75 step run with closing a loop.