

FIONA Deliverable D2.2.1

State of the Art on Service-Oriented Software

Component Models

Final Version of Deliverable

•

Document status: Final version

Dissemination level: Public

Version: 1.0

Submission date: 31.3.2014

Editor Dennis Stampfer Univ. of Applied Sciences Ulm (HSU)

Contributors: Dennis Stampfer Univ. of Applied Sciences Ulm (HSU)
Alex Lotz Univ. of Applied Sciences Ulm (HSU)
Christian Schlegel Univ. of Applied Sciences Ulm (HSU)

Supported by

Germany – Federal Ministry of Education

and Research (BMBF)

Slovenia – Ministry of Economic

Development and Technology (MGRT)

Czech Republic – Ministry of Education,

Youth and Sports (MSMT)

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 2 of 32

Document History

Version / Date Author Remarks

V 1.0 / 31.3.2014 Dennis Stampfer Initial version of deliverable.

-- Dennis Stampfer Merged title page to template for public version.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 3 of 32

Table of Contents

1. Introduction... 5

1.1. FIONA Goals/Targets/Definitions ... 5

1.1.1. Software Integration Platform .. 5

1.1.2. Separation of Roles and Separation of Concerns .. 7

1.1.3. Model-Driven Software Development .. 8

1.1.4. Building Blocks: Market of Components .. 9

1.2. Unified Component Model .. 9

1.2.1. Software Integration Platform .. 10

1.2.2. Separation of Roles and Separation of Concerns .. 11

1.2.3. Model-Driven Software Development .. 11

1.2.4. Building Blocks: Market of Components .. 11

2. Generic Software Component Models ... 12

2.1. (Lightweight) CORBA Component Model.. 12

2.1.1. Software Integration Platform .. 13

2.1.2. Model-Driven Software Development .. 13

3. Robotics Software Component Models ... 14

3.1. SmartSoft .. 15

3.1.1. Integration Platform .. 15

3.1.2. Separation of Roles and Separation of Concerns .. 16

3.1.3. Model-Driven Software Development .. 16

3.1.4. Building Blocks: Market of Components .. 17

3.2. BRICS ... 17

3.2.1. Integration Platform .. 18

3.2.2. Separation of Roles and Separation of Concerns .. 18

3.2.3. Model-Driven Software Development .. 18

3.2.4. Building Blocks: Market of Components .. 18

3.3. ROS .. 19

3.3.1. Integration Platform .. 19

3.3.2. Separation of Roles and Separation of Concerns .. 20

3.3.3. Model-Driven Software Development .. 20

3.3.4. Building Blocks: Market of Components .. 21

3.3.5. ROS on Android .. 21

3.4. OMG Robot Technology Component (RTC) / RT-Middleware ... 22

3.4.1. Integration Platform .. 22

3.4.2. Separation of Roles and Separation of Concerns .. 22

3.4.3. Model-Driven Software Development .. 22

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 4 of 32

3.4.4. Building Blocks: Market of Components .. 22

3.5. RobotML .. 23

3.5.1. Integration Platform .. 23

3.5.2. Separation of Roles and Separation of Concerns .. 24

3.5.3. Model-Driven Software Development .. 24

3.5.4. Building Blocks: Market of Components .. 24

4. Domain Specific Software Component Models ... 25

4.1. Automotive Open System Architecture (AUTOSAR) ... 25

5. Smartphone Domain ... 27

5.1. Software Integration Platform ... 27

5.1.1. Android ... 27

5.2. Separation of Roles and Separation of Concerns ... 28

5.3. Building Blocks: Market of Components ... 28

6. Conclusion .. 29

7. Bibliography .. 30

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 5 of 32

1. Introduction

FIONA aims to develop a modular, accessible framework to support the core functions of localisation

and navigation in indoor and outdoor areas as well as facilitate the development of applications and

services to be built upon them. Therefore, it will tailor a Service-Oriented Software Component Model

to the needs of FIONA. This document presents FIONA deliverable D2.2.1 as the outcome of task T2.2

in WP2. It provides an overview of the state of the art technologies on Service-Oriented Software

Component Models.

Several existing technologies are investigated and compared. First, the targets of FIONA with respect

to Service-Oriented Software Component Models (SOSCM) and their relations are described. Then,

the Unified Component Model (UCM) is addressed as a collection of requirements for next-generation

state of the art approaches. For each technology, the specific scope and background as well as the

most important details of the methodology are described in the context of FIONA goals and UCM in

order to identify their progress towards UCM and FIONA goals.

1.1. FIONA Goals/Targets/Definitions

This section lists and defines aspects that the FIONA platform addresses. These aspects provide a set

of terminology and guide the research and description for state of the art technologies.

Figure 1 Terminology and relations

1.1.1. Software Integration Platform

A major requirement on the software integration platform is to provide the infrastructure for

implementing the various methodologies and technologies ("FIONA basic services") in software

components of FIONA and to support the composition of these software components to applications,

both in-house and from third party suppliers.

Such a platform must provide a definition of software elements and their interaction and

communication in a Service-Oriented Software Component Model which is the basis for an common

framework for integration. Within the structure of the integration platform, decomposition of entities in

components and communication among them has to be defined. These concepts result in a component

hull (Figure 2) that maintains stable interfaces for the involved roles (e.g. developer and integrator).

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 6 of 32

Mappings towards the underlying infrastructure (e.g. operating system, communication middleware)

are provided by the execution container. Programming towards a component hull prevents vendor lock-

in on specific platforms.

Figure 2: Component and its structure

1.1.1.1. Communication middleware

A communication middleware (e.g. OMG CORBA, OMG DDS, ACE) is a software layer between

application and network stack of the operating system. They are very common in distributed systems,

but also for local communication between applications. They provide an abstract interface for

communication independent of the operating system and network stack.

There are many distributed middleware systems available. However, they are designed to support as

many different styles of programming and as many use-cases as possible. They focus of freedom of

choice and, as result, there is an overwhelming number of ways on how to implement even a simple

two-way communication using one of these general purpose tools. These various options might result

in non-interoperable behaviors at the system architecture level.

For a component model as a common basis, it is therefore necessary to be independent of a certain

middleware. Middleware independence has also been recognized by OMG in the Unified Component

Model and has been included as requirement.

1.1.1.2. Component Based Software Engineering

Component Based Software Engineering (CBSE) is an approach for software engineering which has

gained wide acceptance during the last decade.

“A software component is a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be developed independently and is subject to

composition by third parties.” [1].

CBSE separates component development (functionality, technically driven) and system development

(system integration, application driven). It shifts the system development process to reusing as many

off-the-shelf components as possible and to develop only the small delta between reused components

and application in mind. CBSE explicitly addresses reuse and it is therefore necessary to address

composition when using principles of CBSE.

[2] [3] [4] provide a broader overview of robotics frameworks and CBSE in robotics.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 7 of 32

1.1.1.3. Service-Oriented Architecture

Services “combine information and behaviour, hide the internal workings from outside intrusion and

present a relatively simple interface to the rest of the program” [5]. A service based view defines a

granularity of the entities in a component based approach. Services are self -contained and meaningful

entities in a system. They provide a certain functionality using defined communication contracts . A

Service-Oriented Architecture (SOA) has to ensure that services in the system do not get reduced to

interfaces.

Service-Oriented Architectures (SOA) are "the policies, practices, frameworks that enable application

functionality to be provided and consumed as sets of services published at a granularity relevant to the

service consumer. Services can be invoked, published and discovered, and are abstracted awa y from

the implementation using a single, standards-based form of interface" [5].

The term "Service" in the context of SOA is not to be mixed with "FIONA Basic Services". "FIONA

Basic Services" are methodologies, technologies and implementations of e.g. localisation, perception,

navigation and might be provided to the system by "SOA Services".

1.1.1.4. Service-Oriented Software Component Model

A Service-Oriented Software Component Model (SOSCM) combines and formalizes the principles of

SOA and CBSE. This way, the architecture benefits from the composability and reuse of the system

parts while at the same time ensuring interoperability of services with stable interfaces and proper

abstraction.

A model represents and defines structure and elements of a system or methodology in a formal way. A

component model is a standardisation, typically implemented in a common framework which is the

basis for an integration platform. A common component model is mandatory for systematic reuse at

component and service level and is an important step towards a market where component (third party)

suppliers and integrators benefit.

A component model has to define how entities of the system are described as well as to specify ho w

they interact. Component models should be described independently of implementations and therefore

also independently of specific (meta-model) platforms. Becoming independent of platform and

implementation, introduces a new level of abstraction that allows to integrate them to new platforms

and create new areas in a market.

1.1.2. Separation of Roles and Separation of Concerns

1.1.2.1. Separation of Concerns

Separation of concerns is one of the most fundamental principles in software engineering . [6] describes

separation of concerns with respect to the robotics domain. As robotic systems are particularly

complex software systems, including lessons learned from this domain is relevant to FIONA.

Separation of concerns is a general strategy how to break problems into smaller ones, solve them

separately and combining the results that solve the problem in the first place. By solving separate

problems, one can focus on the individual problem at hand without requiring any knowledge about

other parts or problems. Separation of concerns requires to identify the right granularity of

decomposition of the original problem.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 8 of 32

With respect to SOSCM, this means that every entity in the system (component, service), solves one

particular problem or task. It can be used and seen independent of other entities which are not part of

the same (sub)problem. By separating the concerns of computation, communication, configuration and

coordination, it allows for example maintaining stable interfaces in the execution container, alternative

implementations (mapping the execution container onto different OS and middlewares), etc. [6].

1.1.2.2. Separation of Roles

As there are many different roles involved in a development process, every role must be able to focus

only on its specific task without requiring knowledge of other tasks. Important roles in the context of

FIONA are component suppliers who provide basic services with components, such as localisation,

obstacle detection or navigation. Another important role is the system integrator, who composes off-

the-shelf components to new applications. However, separation of roles requires methods and tool

support to handover artefacts and in particular knowledge between roles.

Separated roles need individual views on problems and models (parts of the overall system). For

example, a component developer is responsible and therefore interested in the inner structure and

implementation of a component (component as white-box) while the system integrator is interested in

composing new applications by reusing building blocks (components as black-box).

Apart from few exceptions, it is still state-of-practice in robotics, that roles involved in the development

of robots are too tightly coupled and every involved person needs to be an expert in every area . This

ranges from algorithms over expertise of the application domain up to the final integration. Integrated

scenarios are driven by technical achievements, rather than an integration methodology.

However, an expert cannot be an expert in every field and therefore cannot become a player in all

markets of the different application domains. Lack of separation of roles is therefore a severe show-

stopper towards a market [7]. Separation of roles reduces risks, efforts and costs as well as time-to-

market and increases overall robustness of systems. A successful market and business ecosystem

depends on separation of roles where building blocks can be handed over as black-box from one role

to another, hiding complexity and still ensuring composability.

1.1.3. Model-Driven Software Development

While standardisation and systematic reuse can be achieved through CBSE (cf. [8]), Model-Driven

Software Development (MDSD) raises development to the next level. It allows to separate domain

knowledge and structure (software design) from implementation (templates in code generators) as well

as automating the development process (code generation).

MDSD is not limited to code generation. It puts models into the focus of the development process

(models not being documents/paperwork but being computational and the solution itself) and is a tool

that:

 provides individual/focused views to separated problems/roles within the whole development

process, e.g. component view, architectural view, configuration view, etc.

 separates technical problems from business logic / use cases and therefore

 decouples development in space (roles, teams) but also in time: speedup, automation, time-to-

market.

In order to use MDSD for CBSE, the component model has to be specified (implemented) as meta-

model for use in MDSD. It is necessary to develop tools for modeling (graphical, textual) the system,

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 9 of 32

code generation, configuration, checks/validation, compiling and deployment to support the different

roles engaged in the overall development process.

Several integrated toolchains and projects exist for MDSD, one of the largest being the Eclipse

Modelling Project [9]. It includes for example, Papyrus [10] that allows for graphical representation and

modelling in UML as well as Xtext [11] for textual modelling. Tools and concepts behind MDSD target

at being generic and extendable, thus being able to add domain specific extensions and being tailored

to domain specific needs.

1.1.4. Building Blocks: Market of Components

Concepts and tools for the development of reusable components in a common framework and

integration platform is a necessary prerequisite towards a market in which several roles and

stakeholders can contribute and make use of. It creates opportunities for component and system

developers/integrators, minimises effort and maximises efficiency.

Component developers can provide their components in the market where system

developers/integrators can use them for composition of new appl ications. Within FIONA, it is desirable

that the components providing "FIONA Basic Services" (implementations of e.g. localisation, obstacle

detection) are introduced in the market. Exchange at the level of such a market must happen at the

proper level of abstraction, as is provided by components and services, but not on the level of

implementation / libraries. In the long term, new use-cases and business models will be enabled

through the re-use of components as well as new components contributed from third party-suppliers.

1.2. Unified Component Model

In September 2013, the Object Management Group (OMG) released a Request for Proposal (RFP) on

the „Unified Component Model“ (UCM) [12] [13] [14] [15]. Its goal is to create a new component model

for Distributed, Real-Time and Embedded Systems.

Key statements:

 OMG defines a list of requirements towards a next-generation state-of-the-art and is requesting

proposals for an Unified Component Model.

 Driven by a big standardisation player (OMG) who has established a variety of component

standards (CORBA CCM, RTC, ...)

 Requires a formal component model, specified as meta-model

 Aims to be independent of middleware

 Aims to include multiple communication models (interaction patterns)

 Addresses system configuration and parameterisation

 Considers separation of concerns

Consequence to FIONA:

 The SOSCM used in FIONA (SmartSoft) has influenced and shaped the RFP. Its concepts

have been confirmed by the RFP. FIONA concepts are therefore in line with state-of-the-art.

 Developments behind UCM are worth being followed within the scope of FIONA.

UCM is of interest to FIONA because OMG as a big standardisation player, with members covering a

wide scope and is expected to combine state-of-the-art and lessons learned in component based

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 10 of 32

systems into UCM. UCM provides a list of requirements for the next-generation state-of-the-art in

component models.

UCM was motivated by critics (complexity, long learning curve, lack of performance and high footprint)

[12] of Lightweight CORBA Component Model (LwCCM) and is an evolution thereof. The CORBA

component model (CCM) collected best practices and common use-cases of the CORBA middleware

in a component model, mainly focusing on enterprise applications. LwCCM uses the CCM and tailors it

to embedded systems. UCM follows the goals of LwCCM but plans to include trends and state-of-the-

art in distributed, real-time and embedded systems.

The UCM RFP explicitly references SmartSoft as one of the component standards that need to be

considered for UCM. SmartSoft can therefore be considered state-of-the-art. It is expected that the

principles and methodologies of SmartSoft influence and contribute to the next -generation state of the

art UCM.

At the time of preparing this document, the UCM is in the state of collecting proposals (deadline 19

May 2014). This version of the document focuses on the goals and requirements that UCM shall meet.

Updated information on the UCM can be found in [13] and at RemedyIT [14], the driving force behind

UCM within OMG.

1.2.1. Software Integration Platform

UCM is targeted to be a „simple, lightweight, middleware-agnostic, and flexible component model“ [12].

UCM aims to keep compatibility or at least portability to existing OMG approaches, e.g. LwCCM and

RTC components.

UCM will be independent of a specific middleware standard and/or language (LwCCM depends on

CCM and CORBA middleware), but be described in IDL and describe IDL mappings to languages. The

RFP states that implementations should be replaceable by alternative implementations without

requiring changes.

UCM will include multiple communication models (interaction patterns) which shall also support

extension and include at least request/reply, publish/subscribe as well as asynchronous handling of

both method invocation and invocation handling on client and service side. It requires the

communication model to be separated from components. The RFP refers to software connectors, so it

can be assumed that proposals might use the principle behind software connectors.

It considers security and specifically asks policies (authentication, audit, authorization, message

protection) and plans to take into account resource-constrained environments (resource awareness).

System parameterization and configuration seems to be a focus, since the RFP asks for initial

configuration of component, container and communication elements as well as deployment and

runtime configuration. This is not only limited to parameters and configurations, but also by providing a

component lifecycle model and its management.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 11 of 32

Figure 3: Unified Component Model

1.2.2. Separation of Roles and Separation of Concerns

Separation of roles and concerns is not explicitly mentioned but evident in requirements description

and pre-final drafts. Separation is addressed by asking for separation of functional specifications from

non-functional specifications, meaning component from component container. This both refers to

component hull / execution container as well as inner and outer view on components for different roles.

The draft presentation and talks mention different roles and UCMs impact on them. However, it does

not describe or explicitly target their separation.

1.2.3. Model-Driven Software Development

As a component model, UCM does not directly ask or refer to MDSD. However, it requi res models to

be MOF-compliant. Since this is a basis towards MDSD, it is expected that the implementations or

show-cases of proposals will make use of MDSD.

1.2.4. Building Blocks: Market of Components

UCM defines the basis that is required for a market of components, however does not explicitly

address it as target. It supports composition of components, but does not address composite

components (systems of systems). It tries to keep all elements extensible. This might be a benefit for

custom development, but might limit the exchangeability of components and therefore might be

contradictory to market needs.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 12 of 32

2. Generic Software Component Models

There are several generic or multipurpose frameworks that aim to support CBSE in gene ral (e.g.

JavaBeans, CORBA, DDS, etc.). We use CORBA and CORBA related activities as a representative

example.

Key statements:

 General purpose.

 Freedom of choice instead of freedom from choice: too many ways to do one thing, no

guidance with respect to component design.

 Even though (Lw)CCM and CORBA are standardized by OMG, OMG is looking for a new

standard: Unified Component Model.

Consequence to FIONA:

 Following freedom from choice instead of freedom of choice will provide guidance for

developers and integrators, e.g.:

o Separation of concerns

o Communication semantics (communication patterns)

o Abstraction layers

Generic Software Component models usually base on the concept of freedom of choice, providing

freedom and alternatives with respect to defining and implementing component interfaces and

functionality. However, it has severe drawbacks as they are designed to support as many different

styles of programming and as many use-cases as possible. As a result, there is a overwhelming

number of ways on how to implement even a simple two-way communication using one of the provided

generic purpose tools. Unfortunately, the various options result in completely different behaviours at

the system level architecture.

In contrast (e.g. SmartSoft) follows the idea of freedom from choice instead of freedom of choice [16].

In this term, a developer can expect assistance by strictly reducing the number of offered alternatives

such that he can rely on system level conformance of his contributions as long as he sticks to the

imposed restrictions.

2.1. (Lightweight) CORBA Component Model

CORBA (Common Object Request Broker Architecture) is one of the most used middleware standards.

CORBA and its object model was designed to support as many different programming styles and use -

cases as possible. This resulted in too many ways to do one thing and the various options led to

different system behaviours as well as [17] tightly coupled and ad-hoc implementations. The CORBA

Component Model (CCM) [18] [19] was introduced to overcome these issues. It extends the CORBA

object model and integrates commonly used CORBA patterns in a standard environment. Its main

contribution is the standardization of component development using CORBA as middleware

infrastructure on which CCM depends.

The CORBA Lightweight Component Model (LwCCM) [18] [20] is a profile based on CCM and defines

a subset that tailors and simplifies CCM to support constraints of embedded domain, e.g. limited

processing, small codebase, distributed, cross language and cross platform. It combines best practices

and common use cases to avoid doing one thing in multiple ways. Even though LwCCM relies on

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 13 of 32

CORBA as underlying middleware, LwCCM is designed to hide CORBA middleware mechanisms from

the developer.

2.1.1. Software Integration Platform

The implementation of CORBA Components is described using the Component Implementation

Definition Language (CIDL). Components communicate through ports which expose their interfaces to

clients. Communication mechanisms include synchronous and asynchronous method invocation,

events (loosely coupled asynchronous communication based on the observer pattern), attributes

(configuration) and lifecycle control.

CCM defines techniques and structures to implement CORBA servers that can host CORBA

components (execution container). Together with the IDL description of the interfaces, component

skeletons are generated and compiled with the component implementation. These component

programs (such as JAR, dll, shared library, etc.) are executed in component servers.

Component Servers have no prior knowledge how to configure or instantiate the components, but can

configure them through a configuration interface. The configuration interface can be extended by

components to allow for component specific configuration. The component server can control the

components lifecycle and activate or deactivate components to preserve limited resources.

Quality of Service (QoS) is available within Real-Time CORBA [21].

2.1.2. Model-Driven Software Development

CCM models components using the Component Implementation Definition Language (CIDL). Similar to

most middlewares, CORBA uses code generation for skeletons/stubs towards the communication as

well as implementation skeletons. CORBA and CCM does not directly address MDSD but can be used

as target implementation for MDSD.

There are activities that make use of MDSD in relation to CCM. For example, [22] focuses on

component composition distinguishing between white-box and black-box view. Components and their

relations can be modelled using UML Profiles. MDE tools and concepts are used to transform and

generate code against CCM.

The Open CORBA Component Model Platform (OpenCCM) [23] is an open source implementation of

CCM. Its toolchains support modelling components, implementations, and assemblies with UML.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 14 of 32

3. Robotics Software Component Models

(Service) robotics is a domain with very high technical requirements from a very broad field with big

complexity, therefore system integration is very challenging. Many examples of autonomous robots

show impressive achievements in this domain. However, most of these are technical demonstrations

lacking a conceptual approach for software development. Every player in the robotics community

develops systems from scratch over and over again with very limited possibilities for reuse, system

composition and separation of roles.

Key statements:

 Not yet a widespread use of systematic software engineering in robotics (e.g. ROS stands out

as the largest integration platform in robotics while ignoring industrial needs).

 The need for component models and meta models has been recognized by the robotics domain

and is provided by some projects (e.g. BRICS, SmartSoft and PROTEUS).

 Concepts of SmartSoft have contributed to Unified Component Model and shapes activities

within Europe (e.g. Topic Group at EU Robotics AISBL, Research Agenda) and are in line with

them.

 Robotics is a domain with very high complexity, thus needing separation of concerns,

separation of roles, system integration and system composition.

Consequence to FIONA:

 Robotics shows that integration and composition is important as well as for FIONA.

 FIONAs approach to use and extend a Service-Oriented Software Component Model from

robotics (SmartSoft) has been confirmed by recent initiatives such as (Topic Group at EU

Robotics AISBL, EU Research Agenda/Multi Annual Roadmap).

It has become obvious that (IEEE ICRA SDIR workshop series, EU FP7 BRICS project, workshops at

European Robotics Forum ERF, Journal of Software Engineering for Robotics) software development

for robotics is a research field (recognized in EU Strategic Research Agenda and Multi Annual

Roadmap [24]) and only a design abstraction supporting separation of concerns and separation of

roles can adequately address the software complexity.

Within the research activities in Europe, several groups are joining forces in software development

within the topic group "Software Engineering, Systems Integration, Systems Engineering" in

euRobotics AISBL (topic group coordinators Prof. Schlegel / Hochschule Ulm, Dr. Lafrenz / Technische

Universität München) to push these topics towards the next level in accordance to the EU strategic

research agenda [24].

An overview on CBSE in robotics and on design principles to enable the development of reusable and

maintainable software building blocks is given in [2] [3] [25]. Up to now, many fundamental

requirements on CBSE and MDSD are not fulfilled by currently wide-spread robotics software

frameworks. The Robot Operating System (ROS) is the most widely used integration platform for

robotics applications. However, the most advanced concepts for software development for robotics are

the RTC Specification and SmartSoft as is detailed below.

FIONA can build and learn from insights, approaches, methods and tools of the robotics domain in

order to come up with a tailored integration platform.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 15 of 32

3.1. SmartSoft

The term SmartSoft originally stands for the component based robotics framework that was publi shed

in 1999 [26] [27]. Comparable with other robotic frameworks or middlewares, SmartSoft provides

communication mechanisms to exchange information between components and provides a component

container. However, there are clear and explicit communication semantics (communication patterns)

and a clear component model. Both is realized as a meta-model and independent on middleware or

implementation. In addition, SmartSoft provides implementations and tools the Eclipse based

SmartMDSD Toolchain [27] to provide tool support in an integrated environment.

3.1.1. Integration Platform

The distinguishing factor of SmartSoft is that the communication semantics are implemented in a fixed

set of communication patterns which are aligned with the mindset of SOA.

Comm. Pattern Description Config. Pattern Description

Send one-way communication Parameter component configuration

Query two-way request-response State/Lifecycle activate/deactivate comp. services

PushNewest 1-to-n publish-subscribe DynamicWiring dynamic component wiring

PushTimed 1-to-n publish-subscribe Event asynchronous notification

 Monitoring introspection of components

 (internally based on communication patterns)

Table 1: SmartSoft communication patterns (left) and coordination/coordination patterns (right).

Similar to other robotics frameworks and middlewares, SmartSoft as well provides both the publish-

subscribe and the request-response communication semantics. However, by explicating typical

requirements from various robotics use-cases, SmartSoft refines the two generic communication

mechanisms into further communication patterns with distinctive communication policies. This provides

stable communication policies between components and thus enables reuse of components with stable

and self describing services. The communication patterns strictly separate the unambiguous

communication semantics between components and the component's internal communication

interface, thus separating the sphere of influence between component developers and system

integrators. This directly supports a black-box and white-box view for components which is the basis

for system integration.

Figure 4: Mastering the link between component inside / outside view by communication patterns

SmartSoft is capable to configure and parameterize components (variability management). Thereby a

component developer can define initial default values a component can use for stand -alone execution,

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 16 of 32

then a system integrator can further refine these values in order to tailor the component to the actual

target application and target system. Finally, the parameters can even be configured at run-time (using

the configuration patterns in Table 1 on the right) in order to appropriately react to changing run -time

conditions.

In SmartSoft, resource awareness was considered an important aspect from the very beginning. For

instance, each component consists of a lifecycle state automaton [28] which allows to control and

adjust the amount of resources a component is allowed to consume during its execution.

3.1.2. Separation of Roles and Separation of Concerns

Beyond the direct support of component developers and system integrators, SmartSoft also prov ides

an abstraction layer for the underlying communication middleware. This allows to implement the

SmartSoft communication patterns on top of any middleware independent of the actual technology. At

the moment two main implementations of SmartSoft are available, one based is on CORBA and

another more lightweight one is based on pure message passing (ACE). This abstraction allows to

build on top of established middleware concepts and at the same time provides stability for the internal

implementations inside of components. Component implementations do not depend on the middleware

and thus it is able to seamlessly migrate components from CORBA implementation to ACE

implementation of SmartSoft. Its flexibility has also been shown by running SmartSoft on iOS (ma pping

of execution container within FIONA-Project) [29].

The SmartSoft approach and the SmartSoft MDSD toolchain supports and explicitly targets separation

of roles as needed in a robotics business ecosystem [30] [7] (Figure 5).

Figure 5: MDSD to manage the hand-over from one role to another role as key ingredient towards a robotics business

ecosystem.

3.1.3. Model-Driven Software Development

Principles behind SmartSoft have been explicated in a MDE component model. This component model

is implemented in the SmartMDSD Toolchain using the Eclipse Modelling Tools. The toolchain

supports the overall development process thereby providing different views according to the different

developer roles such as the component developer and the system integrator. In contrast to related

approached such as the BRICS Component Model, all DSLs and Models in the SmartMDSD toolchain

are integrated into a holistic development workflow. The benefit is that the toolcha in not only supports

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 17 of 32

the different roles to focus on their individual tasks but in particular automates the knowledge handover

between these roles by model transformations.

3.1.4. Building Blocks: Market of Components

One of the principles behind SmartSoft is that robotic systems have to be composed from components,

rather than programmed. The Service-Oriented Software Component Model therefore allows for strict

separation of concerns and separation of roles. Model-driven software development (MDSD) is seen as

an enabler to drive robotics towards a business ecosystem for robotics software [7]. The concepts of

SmartSoft are implemented in an integrated model-driven toolchain to support the complete

development process from component developer over system integration up to runtime aspects.

Figure 6: SmartSoft MDSD Toolchain reusing components

SmartSoft is very advanced in providing re-usable off-the-shelf components. It provides components in

a repository [31] ready for reuse and composition of new robotic applications through the SmartSoft

MDSD toolchain. New applications have been composed from such components for a number of

complex robot applications, for example the Robot Butler scenario and other applications on several

robot platforms as collected in [32]. System composition has also been successfully applied in a

number of projects such as the research project "ZAFH Servicerobotik" where external partners reused

and collaborated through components. A logistics showcase re-using SmartSoft components has been

shown using the "Robotino 3" with FESTO [33]. SmartSoft and provided components have been

exploited by the student project RoboCup. A new team of students reuses existing components in new

configurations and composes them to the different challenges in preparation for the competition to the

Robocup@Home German Open Challenge. The student teams do not have prior robotics knowledge

and the complete team changes every year without overlap.

3.2. BRICS

BRICS (best practice in robotics) [34] was a European project funded under FP7 and finished in

February 2013. The main objective of BRICS was to collect best practices in the robot development

process from the robotics community. It aimed at exploiting model-driven engineering (MDE) as

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 18 of 32

enabling approach to reducing the development effort of engineering robotic systems by making best

practice robotics solutions more easily reusable. Outcomes of BRICS are:

 BRICS Component Model (BCM), a component model for robotics.

 BRICS Integrated Development Environment" (BRIDE), a model-driven engineering tool for

component modelling.

 BRICS Open Code Repository (BROCRE) , a set of tools to browse and install BRICS

software.

BRICS contributed to development of ROS as it automated and sped up development. However, at

their own opinion it contributed "only in a small part of the overall development process" [35].

3.2.1. Integration Platform

BRICS used ROS as a starting point because it was one of the most popular frameworks at that time.

One focus in BRICS was to fill the gaps of ROS in order to overcome its limitations such as the

insufficient support for system integration. Thereby BRICS aimed to harmonize all the demands from

the robotics community (independent of the individual experience) which as a logical conclusion led to

a very generic component model, BCM [36].

The BCM is a valid abstraction for ROS and Orocos. However, it is very generic and is missing

important features such as a decent definition of communication semantics or configuration

capabilities. Among others, these limitations are the reason why BCM is not able to support a black-

box/white-box view for components and thus is insufficient with respect to system integration.

A set of Eclipse based tools was published under the "BRICS Integrated Development Environment"

(BRIDE) [37] and allows for creating ROS packages, nodes, coordinators and launch files for

deployment. BRIDE uses the BRICS Component Model and provides mappings to ROS and Orocos.

3.2.2. Separation of Roles and Separation of Concerns

In the context of BRICS, separation of concerns is considered important which results in the so called

"5Cs" (5 concerns) [36], namely "Coordination", "Configuration", "Composition", "Communication" and

as an orthogonal concern the "Composition". Each of these concerns address an important aspect of a

system.

3.2.3. Model-Driven Software Development

MDSD (MDE) was in focus in BRICS from the beginning. For instance, BCM is a component model

implemented using Eclipse Modeling Tools. An approach based on Software Product Lines (SPLs) to

handle similar system variants is presented in [38]. A DSL, basically to abstract concepts defined in the

ROS launch files is presented in [39]. All these concepts have in common that they are tightly

connected to concepts in ROS and are a clear advancement in the software development of ROS.

However, the BCM is not complete and misses for example communication semantics and therefore

modeling and development for ROS suffers from BCM limitations.

3.2.4. Building Blocks: Market of Components

BRICS developed an additional tool called BROCRE (BRICS Open Code Repository) which allows to

manage code bases from various sources. Basically, BROCRE provides a GUI for several ROS tools

for package management (including Debian package management APT and versioning systems such

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 19 of 32

as SVN, Git, Mercurial, etc.). Thus, similar as in ROS, the exchange takes place on the level of

libraries and BROCRE is thus limited with respect to system integration.

3.3. ROS

The Robot Operating System (ROS) [40] is a set of software libraries and tools that help to build robot

applications [41]. This distinction in libraries (e.g. OpenCV, PCL, navigation libraries, sensor-drivers,

...) versus ROS itself (system structure, communication, ...) is important. The huge codebase of

libraries from ROS (including, for example, navigation, perception, simulation and visualization) might

be reused in other applications or frameworks (e.g. within components of SmartSoft). ROS stands out

as one of the largest integration platforms with implementations and mappings to several languages

and platforms. The popularity of ROS led to a huge variety of new algorithms and solutions of technical

challenges in robotics. ROS is a typical representative of the current situation in robotics software.

ROS supports rapid prototyping by providing a set of separated tools for Ubuntu Linux which allow to

easily compile custom libraries in a development environment. The development environment is mainly

based on CMake and bash scripts. In addition, ROS provides a self -made communication middleware

with so called Topics as the main communication mechanism. Topics implement an m:n publish-

subscribe communication semantics (which can be compared to the blackboard pattern). Most of the

tools in ROS are based on Topics. In addition, ROS provides further special purpose communication

mechanisms, such as Services (similar to a synchronous remote procedure call), Actionlib

(asynchronous request-response) and Transformation Frames (for transforming coordinate frames).

ROS includes a large set of distributed single development tools, but does not provide an integrated

toolchain. ROS is missing an explicated component (meta-) model, which is a key requirement towards

system composition. It misses separation at several levels, for example internal and external views of a

component. Furthermore, ROS is missing any tool support for system integrators (such as deployment

modelling, system composition and initial configuration in launch files, etc.).

3.3.1. Integration Platform

The main focus of ROS is on the unification of the building process for various libraries mostly

provided by academic institutions. Therefore, integration takes place on the level of libraries. Even so it

is possible to decompose code artefacts into distributed Nodes, a clear encapsulation in the sense of

reusable building blocks as well as the black-box/white-box view are not possible with the current

structures in ROS. For instance, in order to use Nodes implemented by other institutions, it is

necessary to investigate their source code in order to really understand the used communic ation

characteristics.

Figure 7: ROS basic concept [42]

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 20 of 32

Even for ROS, stability (in terms of changes of interfaces and mechanisms), semantics (explicit

specification of behaviour and structures in a way independent from implementation) and robustness

(in terms of quality control) are still major issues.

ROS provides two mechanisms for communication: (i) a publish/subscribe interaction called topic and

(ii) a synchronous request/response interaction called service. In addition, users are allowed to

introduce and use a variety of further communication mechanisms provided as add-on libraries (e.g.

actionlib) and different styles of using communication mechanisms are encoded as part of the user

code. As consequence, node-builders not only bind their user code to different styles and flavours of

non-interoperable communication mechanisms but they even use them across components thus

violating the concept of stable and interoperable component interfaces. The apparent effect for ROS

users of a missing clear separation of user code and framework code are frequently changing APIs. As

no clear definition of the different communication mechanisms is available, an abstract component

model which is independent of code fragments is not available. Components with individual

communication mechanisms become non-separable and cannot be reused separately. Providing

components with unprecisely specified interfaces makes it difficult for the application builder to come

up with systems with explicated properties like resource requirements.

Although ROS sees its nodes as components, ROS lacks a pivotal property of a component based

approach. CBSE requires identified stable structures which provide an execution container and guide

the component developer such that he ends up with system level conformance for composability.

Instead, ROS supports side-by-side existence of all kinds of overlapping concepts without an abstract

representation of the core features and properties. ROS lacks a component model representing its

node concept independently of a particular implementation.

3.3.2. Separation of Roles and Separation of Concerns

ROS is missing mechanisms and structures to support different stakeholders such as component

developer and system integrator. Component developers are typically technology experts and require a

more detailed view on components (white-box view) including the component's internal details whereas

system integrators are domain experts and thus typically require a more high level view (black -box

view) in order to compose their applications in a buildings blocks manner.

In the ecosystem of ROS, a white-box view on parts of the system is seen as a huge advantage (e.g.

[43], to name a recent opinion of a ROS user). The requirement to look inside of building blocks and to

adjust them by programming (either because the interfaces are not fitting to the system or because of

custom adaptations) is relevant for ROS. However, separation of roles requires black-box view in order

to provide building blocks that allow for system composition (putting together black boxes) of new

applications, even by third-party integrators.

3.3.3. Model-Driven Software Development

ROS is not using any MDSD techniques. Introducing MDSD in ROS would potentially allow to generate

stable structures, thus supporting component developers to use established and tested structures for

the component implementation. In addition, component models could be represented in an abstract

view for system integrators who on the other hand can use the models for system composition.

Using MDSD for ROS would require a description of the ROS concepts independent from the

implementation. The current status of ROS is that there are only code-examples and documentation for

usage, but no meta-models.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 21 of 32

3.3.4. Building Blocks: Market of Components

Beyond the aforementioned issues, one of the main problems that prevents ROS from being able to

establish a component market is their too strong focus on rapid prototyping while underestimating and

ignoring typical industrial requirements. One of such requirements is for example resource awareness

and defined communication semantics.

Another issue in ROS is related to their custom middleware. Although, ROS core developers invested

great efforts to port the underlying communication middleware onto various platforms, yet they are

completely ignoring established standards and optimized implementations from the middleware

community. This issue is also discussed [44] on the ROS mailing list, where it is proposed to use the

Data Distribution Service (DDS) as a basis. Using an established standard such as DDS would not

only make ROS much more compatible to other domains, but in particular use industrially accepted

technologies. However, at the time of writing, the ROS community seems not to be willing to make this

important step in near future.

3.3.5. ROS on Android

Among various platforms that support ROS is android via the java-implementation of ROS [45]. There

are individual apps that can connect to ROS nodes on robots such as an app that makes android

sensors accessible to ROS [46] or an app that makes a Turtlebot rotate and take panoramic images

[47]. The main method however is an app-in-app infrastructure [48]. An special app (ROS app chooser

[49]) is able to access ROS apps that provide "android services". ROS uses android only together with

a robot for remote control or UI. It targets Android as client platform but does not see Android as a

single target platform.

Supporting ROS on android contributes to the ROS ecosystem by providing a new client, platform and

even sensors. However, ROS on android does not contribute to system composition in the Smartphone

domain. With respect to FIONA, the missing concepts in ROS for system composition prove the

necessity of FIONAs goals.

Figure 8: The Android app "ROS App Chooser" [49]

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 22 of 32

3.4. OMG Robot Technology Component (RTC) / RT-Middleware

Robot Technology Component (RTC) is an OMG standard [50] driven by the Japan's National Institute

of Advanced Industrial Science and Technology. RTC formally defines a component model and has

several reference implementations, one of the most prominent ones being OpenRTM-aist (aka "RT-

Middleware", based on CORBA) [51] [52].

A survey on RTC/RT-Middleware can be found in [28].

3.4.1. Integration Platform

Before the BRICS Component Model and RobotML has been published, RTC and SmartSoft were the

only available initiatives for specifying the structures and semantics of a robotic component. Even so,

the RTC standard had an impact on the robotics community worldwide and has raised the awareness

of needing component models and structures for robotics. Yet, the standard itself was not widely

accepted in Europe and USA and remained mainly used in Japan. The reasons for that are manifold.

For example, the CORBA based OpenRTM-aist implementation does not fully hide the CORBA

middleware details from the component builder. Thus, the user code contains CORBA code fragments

and has therefore a binding to this specific implementation of the specification. The RTC specification

is strongly influenced by use-cases requiring a data-flow architecture. Thus, its component model in

the current stage is strongly influenced by a strict internal automaton structure that is tightly coupled

with the activity model inside a component. For example, it does not easily all ow multiple tasks inside a

component. Nevertheless, providing an abstract component model is the only way to discuss and

compare different robotic concepts and component models with the overall aim of harmonizing the

various models without getting stuck in implementation details and at the level of code fragments.

The RTC specification has once been the most advanced concept of a component model and MDSD in

robotics. However, the activities are not state of the art anymore, especially after activities like BRICS

and SmartSoft.

3.4.2. Separation of Roles and Separation of Concerns

Separation of concerns allows for separation of component model and middleware implementation.

Since there are several implementations available for RTC, separation of concerns is adequately

addressed. The tools behind RTC generates skeletons for implementations which both guide and

restrict developers to stick to the standard and ensure standard compliance.

3.4.3. Model-Driven Software Development

Alongside with RT-Middleware, OpenRTM-aist also provides an Eclipse based IDE. However, this IDE

does not use the Eclipse Modelling Tools but customized GUIs and hidden generators which makes it

difficult to reuse or adjust (even parts) of the tools.

3.4.4. Building Blocks: Market of Components

RTC has proven that components and meta-models are the right approach for robotics, which is

evident through standardisation and the variety of standard compliance industry implementations.

However, RTC does not address the needs as identified nowadays in UCM and OMG pushes towards

more advanced approaches in UCM, even though RTC was standardized in OMG.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 23 of 32

3.5. RobotML

The Project Platform for RObotic modelling and Transformations for End-Users and Scientific

communities (PROTEUS) [53] is a recently finished national project in France. The main objective of

PROTEUS was to provide a common platform, where results from French academic institutions related

to robotics are collected and the transfer to French industrial partners is simplified and supported.

Among other tasks, within the scope of PROTEUS two main outcomes are:

 Robotic Ontology to identify and formalize terminologies and requirements in robotics [54]

 DSLs and tools to support the development process, especially RobotML [55] [56]

The main objective of Robotic Ontology was to identify and define a common terminology in the

domain of robotics harmonizing deviating terms from similar approaches and projects. The idea is that

follow-up projects can use this ontology to create DSLs and tools exposing this terminology that ar e

useful and accessible to other institutions and projects. It is accessible through the Protege tool.

RobotML (Robot Modelling Language) is a Modelling environment based on Eclipse and Papyrus UML

tools. In particular, RobotML defines a UML profile that implements ontology aspects related to robotic

software architectures (including a component definition called System), robot behavior (mainly based

on finite state machines), robotic communication (defining DataFlowPort, ServicePort and connectors)

and deployment (abstractly defining the capability to map on different target platforms such as Orocos

and ROS).

Figure 9: RobotML Domain Model [55]

3.5.1. Integration Platform

On the one hand, RobotML is a reasonable approach to formalize, explicate and abstract over common

(often hidden) concepts in frameworks such as ROS and Orocos. On the other hand, RobotML has not

achieved to decouple from the ideas and concepts in ROS to a degree that would allow to become

independent of the target platform. Instead, RobotML directly maps the terminology defined in the

robotic ontology from PROTEUS with the implementation in ROS or Orocos.

One interesting aspect of RobotML is the concept of connectors. At the moment it just defines the

synchronization and the buffering policies for communication between components. However, this

concept could be extended by more generally formalizing the communication semantics and policies

such as for example in SmartSoft. At the time of writing an exchange of ideas between SmartSoft and

RobotML developers takes place at the European Robotics Forum within the Robotics Modelling

Initiative.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 24 of 32

3.5.2. Separation of Roles and Separation of Concerns

Figure 10: PROTEUS Rationale [57]

In the sense of separation of roles RobotML distinguishes between "Provider" and "User". Thereby

exchange of "elements" between them takes place using the PROTEUS portal. The element can be

system descriptions modelled using RobotML, algorithms (resp. libraries) or other data. Even so, this is

generally aligned with the goals of FIONA, the main problems are that at the end of the PROTEUS

project, RobotML remained in an early prototypical state. Beyond the few promising publications such

as [58] it remains unclear how to extend the RobotML models such that a component model is able to

support black-box and white-box views, the communication characteristics are distinctly defined and

finally the code generators can be implemented for more than just ROS, Orocos and Morse.

3.5.3. Model-Driven Software Development

One strong point in PROTEUS is their explicit usage of MDSD from the very beginning. Similar as in

SmartSoft, RobotML uses Eclipse and Papyrus to define models. However, at the time of writing, the

tooling behind RobotML has not yet reached a sufficient maturity level to be able to build on top of it. In

particular, many conceptual questions remain how to use the tooling beyond the scope of ROS and

Orocos platforms.

3.5.4. Building Blocks: Market of Components

PROTEUS provides a web portal [56] to exchange models and implementations, which to a certain

extent can be seen a robotics market.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 25 of 32

4. Domain Specific Software Component Models

There are several domains that apply component based software engineering, e.g. in automotive and

avionics that have come up with solutions meeting domain specific requirements. We use AUTOSAR

as a representative example.

Key statements:

 Automotive is an industry which has high demands for software and software engineering

processes.

 New developments in automotive are driven by composition of components.

 Automotive has an established ecosystem of component suppliers and value chains.

 AUTOSAR is an established standard that uses components for composition and relies on

component models.

Consequence to FIONA:

 AUTOSAR shows the necessity of taking frameworks to the next level of component models

and meta models in order to manage the complexity and composability of a system.

 FIONAs decision to ground on component based engineering and meta models is supported by

the success story of AUTOSAR.

 FIONA must not leave freedom for interpretation (e.g. in semantics) which otherwise limits

composability and interoperability as in AUTOSAR.

4.1. Automotive Open System Architecture (AUTOSAR)

The Automotive Open System Architecture (AUTOSAR) development cooperation "is a worldwide

development partnership of car manufacturers, suppliers and other companies from the electronics,

semiconductor and software industry." [59]. It is the primary software component model in the

automotive industry. Its goal is to provide a platform for implementation and standardisation of

vehicular systems by OEMs as well as the integration of functional modules from multiple suppliers.

The developments behind AUTOSAR show good tendencies such as targeting system composition

using commercial off-the-shelf components (COTS) through a defined/standardized component model,

QoS and more. The standard is very heavy and much code is being generated for implementations.

However, tools of different vendors are not always compatible due to some freedom for interpretation

in the standard (e.g. for messages), therefore implementations are not always compatible which limits

composability. The standard defines only interfaces, but does not standardize message exchange,

which may cause inconsistencies between suppliers. AUTOSAR misses a flexible lifecycle automaton

and focuses on (static) configuration during development/deployment but does not address (dynamic)

configuration and reconfiguration or adaptation at runtime.

More complex software systems in AUTOSAR nowadays are typically hidden beyond a "complex

driver" and are thus not natively built via AUTOSAR.

AUTOSAR is a good example that shows the necessity of taking frameworks to the next level of

component models and meta models in order to manage the complexity and composability of a

system.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 26 of 32

With AUTOSAR, the automotive industry has established a software ecosystem of component

suppliers within a value chain.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 27 of 32

5. Smartphone Domain

Within mobile computing platforms, Smartphones are the outstanding platforms in the recent years.

The most widely used operating systems and integration platforms are Android, iOS and Windows

Phone. They have distinct features (especially UI and touch HMI) compared to standard embedded

devices and have advanced concepts for application development and distribution in markets (iOS app

store, android market).

Key statements:

 Integration platforms in the Smartphone domain, such as Android, iOS have no component

model in the sense of UCM.

 Reuse takes place on the level of app-parts and code/libraries rather than on system level.

 Tool support focuses on rapid GUI development rather than classical software engineering.

 It appears that the complexity behind the goals of FIONA are greater than the typical

complexity in the Smartphone domain.

Consequence to FIONA:

 In order to deal with complexity, reuse on a higher level than libraries is a valid goal for FIONA.

 Separation of roles (developer vs. integrator) is missing and has to be considered for FIONA.

 FIONAs goals on a technical and systematic view are still valid and are confirmed by the

Smartphone domain.

The complexity of software in the Smartphone domain is less complex than in robotics. Robots are

dedicated systems (autonomous and autarkic) which act and interact in and with their environment

(e.g. driving on their own, perception, object manipulation). There is a huge variety of different motion

platforms (e.g. wheeled, legged, flying), sensors (e.g. camera, 3d, touching) and algorithms.

Smartphones are focused on being a tool for humans, therefore having its focus on user interaction

(mostly graphical and touch/gestures) with less complexity in functionality and algorithms. Most

Smartphone applications can be limited to presentation of data which is retrieved through webservices,

stored and processed remotely.

5.1. Software Integration Platform

Mobile development is supported by a variety of frameworks (e.g. Appcelerator, Phonegap, Rhodes

and Xamarin) which mainly distinguish in their nature, being natively implemented, in mobile apps

powered by HTML/JavaScript or hybrid applications. An overview can be found in [60]. These

frameworks focus on helping to speed up development of graphical user interfaces across several

platforms (iOS, Android, etc.), some of them also provide an abstraction layer to access the devices of

the Smartphone (gyro, location service, compass). These frameworks and their sophisticated tools

speed up the development process of custom apps. However, it lacks a common understanding and

solution on what level exchange and reuse can be made other than UI elements. There are no

activities known in which reuse is being made at a higher level than software libraries. It does not

address the composition of new applications at that level.

5.1.1. Android

Android uses terms like services and component. Four different types of components [61] exist

(Activities, Services, Content providers and broadcast receivers), for example for a graphical user

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 28 of 32

interface, background operation, providing data or consuming broadcasts. Some of them are

accessible to other applications.

The idea of android components is that every app can make use of another app's components. For

example, an image gallery app might be able to share images with other people and there are apps

that provide a sharing functionality (e.g. via email clients, social network apps). The app will hand over

the image to share to one of these apps which brings the app (e.g. email client with image attached) in

the foreground, guides the user through the sending process within the email app and finally returns to

the image gallery. Requesting actions of other components (communication between components) is

done via asynchronous messaging (android intents). These intents define actions (e.g. view or send

something) and additional data (e.g. URL to open in browser or URI of file to be attached). The intent

might return results, such as the URI of a picture that was taken by a camera app. There are

mechanisms within the Android system to match the intents to activities that other apps provide. There

is no formal component model for Android.

Apple plans to introduce inter-app communication [62] in iOS 8. This is welcome within the view of

FIONA, however, not yet implemented.

5.2. Separation of Roles and Separation of Concerns

Separation is a principle and general guideline in iOS and Android development. Developers often

apply design patterns (e.g. MVC, Template Method, Observer, MVP, etc.) for separation between Data,

UI graphic and UI logic (e.g. iOS makes heavy use of MVC [63]). [64] provides an overview on typical

problems in the mobile domain and used design patterns. However, even there are different

interpretations and practices for these patterns and this separation only happens at the code level on

functional parts. Patterns are a design philosophy that helps a company for in-house projects but rarely

contributes to reuse within a market idea.

Activities towards explicit separation of roles in an integrated approach seem to be missing.

5.3. Building Blocks: Market of Components

Most of the Smartphone Apps apps are applications for the end user, provided through a graphical UI.

In contrast, components are building blocks or entities of applications which can be put together to

form a new application. Apps might contain components but apps are not components itself and

therefore repositories for apps (Android Market, iOS App Store) are not what is called a component

market in this document.

Most comparable to the composition view is Xamarin [65]. It provides C# bindings for native app

development of multiple platforms based on MONO, the open-source implementation of .NET. Its

"component store" [66], offers UI and functional components such as colour chooser dialogs, slider,

buttons, signature input, UI themes and cloud services in an integrated tooling. A similar concept is

"androidlibraries" [67] offering for example diagram or list views.

There are a lot of services that offer composing apps from building blocks in a drag and drop way , [68]

provides an overview. However, these apps only display such as contact information, product

catalogues in a way similar to a website. They are limited in their functionality, but offer composition of

apps on a very non-technical level even for novices without any programming.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 29 of 32

6. Conclusion

Several approaches and frameworks for integration platforms have been presented. However, only few

contain explicit component models, are based on Service-Oriented Architectures and omponent based

software engineering.

Especially in robotics, the need for software development and system composition has been

recognized and is a field of active research, especially within Europe. Within the Smartphone domain,

efforts towards reuse and composition exist, however, these activities are so far focused on cross-

platform reuse and UI elements. Actual reuse on implementation is made on the level of source code

and libraries.

The Unified Component Model initiative driven by OMG has defined requirements and characteristics

of the next-generation state of the art in component models. The SmartSoft Service-Oriented Software

Component Model meets these characteristics to a large extend. The intention of FIONA to use and

adapt the SmartSoft from the robotics domain is therefore in line with the state-of-the-art. Its aspects

are even addressed and in line with the requirements that the OMG lists in the request for proposals of

the "Unified Component Model", the next-generation state-of-the-art. Even more, concepts behind this

approach have contributed to UCM and shape the activities related to CBSE for robotics within Europe.

The need for an integration platform for systematic reuse and composition in order to reduce

development time and enhance maintainability has been recognized by recent activities. Therefore, the

relevance of FIONAs goals have been confirmed and even have increased and FIONAs decision to

base on component based engineering and meta models is supported by these new activities.

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 30 of 32

7. Bibliography

[1] C. Szyperski, "Component-Software: Beyond Object-Oriented Programming," Boston, ISBN 0-201-74572-
0, 2002.

[2] D. Brugali and P. Scandurra, "Component-based Robotic Engineering. Part I: Reusable Building Blocks,"
IEEE Robotics & Automation Magazine, vol. 16, no. 4, pp. 84-96, 2009.

[3] D. Brugali and A. Shakhimardanov, "Component-based Robotic Engineering. Part II: Models and
Systems," IEEE Robotics & Automation Magazine, vol. 17, no. 1, pp. 100-113, 2010.

[4] Christian Schlegel, Andreas Steck, and Alex Lotz, "Model-Driven Software Development in Robotics:
Communication Patterns as Key for a Robotics Component Model," in Introduction to Modern Robotics.:
iConcept Press, 2011.

[5] D. Sprott and L. Wilkes, "CBDI Forum," 2004. [Online]. http://msdn.microsoft.com/en-
us/library/aa480021.aspx

[6] Christian Schlegel, Andreas Steck, and Alex Lotz, "Robotic Software Systems: From Code-Driven to
Model-Driven Software Development," in Systems - Applications, Control and Programming.: InTech,
2012.

[7] Christian Schlegel et al., "Model-Driven Software Systems Engineering in Robotics: Covering the
Complete Life-Cycle of a Robot," in Workshop Roboter-Kontrollarchitekturenlink, co-located with
Informatik 2013, Koblenz, 2013.

[8] Matthias Minich, Bettina Harriehausen-Mühlbauer, and Christoph Wentzel, "Component Based
Development in Systems Integration," in Informatik 2011, Workshop Vorgehensmodelle in der Praxis,
Bonn, 2011.

[9] (2013) Eclipse Website: Eclipse Modelling Project. [Online]. http://www.eclipse.org/modeling/

[10] (2013) Eclipse Website: Papyrus UML. [Online]. http://www.eclipse.org/papyrus/

[11] (2013) Eclipse Website: Xtext. [Online]. http://www.eclipse.org/Xtext/

[12] "Unified Component Model for Distributed, Real-Time and Embedded Systems," Object Management
Group, OMG Document: mars/2013-09-10, 2013.

[13] (2014) OMG Website: Unified Component Model Wiki. [Online].
http://www.omgwiki.org/ucm/doku.php?id=start

[14] (2014) RemedyIT UCM Wiki. [Online]. https://osportal.remedy.nl/projects/ucm/documents

[15] RemedyIT. (2013) Evolution from LwCCM to UCM. [Online].
http://www.omgwiki.org/ucm/lib/exe/fetch.php?media=cid_evolutionlwccm2ucm.pdf

[16] E. A. Lee. (2010) MODELS Keynote Talk: Disciplined Heterogeneous Modeling. [Online].
http://models2010.ifi.uio.no/material/Heterogeneous_Models.pdf

[17] Nanbor Wang, Douglas C. Schmidt, and Carlos O'Ryan, "Overview of the CORBA Component Model,"
http://www.cs.wustl.edu/~schmidt/PDF/CBSE.pdf,.

[18] "CORBA Component Model Specification," 2006. [Online]. http://www.omg.org/spec/CCM/

[19] (2008) The CORBA & CORBA Component Model (CCM) Page. [Online].
http://www.ditec.um.es/~dsevilla/ccm/

[20] Douglas Schmidt, "Tutorial on the Lightweight CORBA Component Model (CCM)," in OMG Workshop on
Distributed Object Computing for Real-time and Embedded Systems, Arlington, VA (USA), 2003.

[21] Object Management Group, "Real-time CORBA Specification," 2005. [Online].
http://www.omg.org/spec/RT/

[22] Pedro J. Clemente, Juan Herandez, and Fernando Sanchez, "Extending Component Composition Using
Model Driven and Aspect-Oriented Techniques," Journal of Software, vol. 3, no. 1, 2008,
http://dx.doi.org/10.4304/jsw.3.1.74-86.

[23] Philippe Merle, "OpenCCM: The Open CORBA Components Platform," in 3rd ObjectWeb Conference,
INRIA Rocquencourt, France, 2003.

[24] (2014) euRobotics AISBL: Topic Groups. [Online]. http://www.eu-robotics.net/ppp/objectives-of-our-
topic-groups/

[25] Ayssam Elkady and Tarek Sobh, "Robotics Middleware: A Comprehensive Literature Survey and

http://msdn.microsoft.com/en-us/library/aa480021.aspx
http://msdn.microsoft.com/en-us/library/aa480021.aspx
http://www.eclipse.org/modeling/
http://www.eclipse.org/papyrus/
http://www.eclipse.org/Xtext/
http://www.omgwiki.org/ucm/doku.php?id=start
https://osportal.remedy.nl/projects/ucm/documents
http://www.omgwiki.org/ucm/lib/exe/fetch.php?media=cid_evolutionlwccm2ucm.pdf
http://models2010.ifi.uio.no/material/Heterogeneous_Models.pdf
http://www.omg.org/spec/CCM/
http://www.ditec.um.es/~dsevilla/ccm/
http://www.omg.org/spec/RT/
http://www.eu-robotics.net/ppp/objectives-of-our-topic-groups/
http://www.eu-robotics.net/ppp/objectives-of-our-topic-groups/

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 31 of 32

Attribute-Based Bibliography," Journal of Robotics, vol. 2012, 2012, doi:10.1155/2012/959013.

[26] Christian Schlegel and Robert Wörz, "The software framework SMARTSOFT for implementing
sensorimotor systems," in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Kyongju,
Korea, 1999, pp. 1610-1616.

[27] Christian Schlegel et al. (2014) SmartSoft Project Sourceforge. [Online].
http://sourceforge.net/projects/smart-robotics

[28] Christian Schlegel, Alex Lotz, and Andreas Steck, "SmartSoft - The State Management of a Component,"
Berichte des ZAFH Servicerobotik, Ulm, Technical Report ISSN 1868-3452, 2011.

[29] (2014, Feb.) MORSE Simulator and iPad using SmartSoft Components. [Online].
http://youtu.be/rSFbq2AE_vg

[30] Alex Lotz et al., "Towards a Stepwise Variability Management Process for Complex Systems – A
Robotics Perspective," in International Journal of Information System Modeling and Design (IJISMD
2014), 2014, (accepted, to appear).

[31] (2014) Servicerobotik Ulm Website. [Online]. http://www.servicerobotik-ulm.de/drupal/?q=node/61

[32] (2014) RoboticsAtHsUlm Youtube Channel. [Online]. http://www.youtube.com/user/RoboticsAtHsUlm

[33] Servicerobotik Ulm. (2013, Dec.) Modular Production System with Robotino® 3, SmartSoft and
SmartMDSD. [Online]. http://youtu.be/J3k-eN7BrBk

[34] (2013) BRICS Website. [Online]. http://www.best-of-robotics.org/home

[35] Herman Bruyninckx, "Step Changes by BRICS & Rosetta," in eu Robotics Forum, Rovereto, Italy, 2014.

[36] H. Bruyninckx et al., "The BRICS Component Model: A Model-Based Development Paradigm for
Complex Robotics Software Systems," in 28th international Symposium On Applied Computing (SAC
2013), Coimbra, Portugal, 2013, pp. 1758-1764, http://doi.acm.org/10.1145/2480362.2480693.

[37] BRIDE - BRICS Integrated Developement Environment. [Online]. http://www.best-of-robotics.org/bride/

[38] Davide Brugali, Luca Gherardi, A. Biziak, Andrea Luzzana, and Alexey Zakharov, "A Reuse-Oriented
Development Process for Component-Based Robotic Systems," in Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), 2012, pp. 361-374, http://dx.doi.org/10.1007/978-3-642-
34327-8_33.

[39] N. Hochgeschwender et al., "A model-based approach to software deployment in robotics," in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on , Tokyo, 2013, pp. 3907-3914,
http://dx.doi.org/10.1109/IROS.2013.6696915.

[40] M. Quigley et al., "ROS: An open-source Robot Operating System," in ICRA Workshop on Open Source
Software, 2009.

[41] (2014) ROS Website. [Online]. http://www.ros.org/

[42] TullyFoote. (2014) ROS Wiki: ROS/ Concepts. [Online]. http://wiki.ros.org/ROS/Concepts

[43] (2014, Mar.) here Website. [Online]. http://360.here.com/2014/03/18/open-source-robotics-foundation/

[44] Brian Gerkey. (2014, Feb.) ros-users Mailinglist: ROS & DDS. [Online]. http://lists.ros.org/pipermail/ros-
users/2014-February/068179.html

[45] Daniel Stonier. (2013) RosJava. [Online]. http://wiki.ros.org/rosjava

[46] (2013) Google play: ROS Android Sensors Driver. [Online].
https://play.google.com/store/apps/details?id=org.ros.android.sensors_driver

[47] (2013) Google play: Turtlebot Panorama (Hydro). [Online].
https://play.google.com/store/apps/details?id=com.github.turtlebot.turtlebot_android.panor ama

[48] Daniel Stonier. (2013, Sep.) ROS.org. [Online]. http://wiki.ros.org/ApplicationsPlatform/Clients/Android

[49] Open Source Robotics Foundation. (2013, Aug.) Google play. [Online].
https://play.google.com/store/apps/details?id=org.ros.android.android_app_chooser

[50] "Robotic Technology Component (RTC)," Object Management Group, http://www.omg.org/spec/RTC,
2012.

[51] Noriaki Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and Woo-Keun Yoon, "RT-middleware: distributed
component middleware for RT (robot technology)," in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2005. (IROS 2005), 2005, pp. 3933 - 3938,
http://dx.doi.org/10.1109/IROS.2005.1545521.

http://sourceforge.net/projects/smart-robotics
http://youtu.be/rSFbq2AE_vg
http://www.servicerobotik-ulm.de/drupal/?q=node/61
http://www.youtube.com/user/RoboticsAtHsUlm
http://youtu.be/J3k-eN7BrBk
http://www.best-of-robotics.org/home
http://www.best-of-robotics.org/bride/
http://www.ros.org/
http://wiki.ros.org/ROS/Concepts
http://360.here.com/2014/03/18/open-source-robotics-foundation/
http://lists.ros.org/pipermail/ros-users/2014-February/068179.html
http://lists.ros.org/pipermail/ros-users/2014-February/068179.html
http://wiki.ros.org/rosjava
https://play.google.com/store/apps/details?id=org.ros.android.sensors_driver
https://play.google.com/store/apps/details?id=com.github.turtlebot.turtlebot_android.panorama
http://wiki.ros.org/ApplicationsPlatform/Clients/Android
https://play.google.com/store/apps/details?id=org.ros.android.android_app_chooser

Deliverable D2.2.1
State of the Art on Service-Oriented Software Component Models

FIONA
ITEA 2 – 12038

 Page 32 of 32

[52] National Institute of Advanced Industrial Science and Technology. (2010) RT-Middleware Overview.
[Online]. http://openrtm.org/openrtm/en/content/rt-middleware-overview

[53] Proteus Website. [Online]. http://www.anr-proteus.fr

[54] Jean-Loup Farges, "PROTEUS - Robotic Ontology and Modelling - 3rd version," 2012.

[55] (2014) RobotML documentation. [Online]. http://robotml.github.io/RobotMLModelingPlatform/index.html

[56] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal Ziane, "RobotML, a Domain-
Specific Language to Design, Simulate and Deploy Robotic Applications," in Simulation, Modeling, and
Programming for Autonomous Robots, vol. 7628, 2012, pp. 149-160, http://dx.doi.org/10.1007/978-3-642-
34327-8_16.

[57] (2014) RobotML Life cycle. [Online]. http://robotml.github.io/IntroductionToRobotML/LifeCycle.html

[58] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal Ziane, "RobotML, a Domain-
Specific Language to Design, Simulate and Deploy Robotic Applications," in Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), vol. 7628, 2012, pp. 149-160,
http://dx.doi.org/10.1007/978-3-642-34327-8_16.

[59] AUTOSAR Website. [Online]. http://www.autosar.org

[60] Diego Wyllie. (2012) App-Entwicklung: Die besten Open-Source-Frameworks für iOS, Android und Co.
[Online]. http://www.muensolutions.com/de/app-entwicklung-die-besten-open-source-frameworks-fur-
ios-android-und-co.html

[61] (2014) Android API Guides. [Online].
http://developer.android.com/guide/components/fundamentals.html#Components

[62] "Bericht: iOS 8 soll App-Datenaustausch erleichtern," Mac & i, vol. 2014, no. 11, Mar. 2014. [Online].
http://heise.de/-2146088

[63] (2012, Jan.) iOS Developer Library. [Online].
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Model -
View-Controller/Model-View-Controller.html

[64] Fadilah Ezlina Shahbudin and Fang-Fang Chua, "Design Patterns for Developing High Efficiency Mobile
Application," Journal of Information Technology & Software Engineering, vol. 3, no. 2, 2013,
http://www.omicsgroup.org/journals/design-patterns-for-developing-high-efficiency-mobile-application-
2165-7866-3-122.pdf.

[65] (2014) Xamarin Website. [Online]. http://www.xamarin.com

[66] (2014) Xamarin Component Store. [Online]. http://components.xamarin.com

[67] (2014) androidlibraries Website. [Online]. http://www.android-components.com

[68] Grace Smith. 10 Excellent Platforms for Building Mobile Apps. [Online].
http://mashable.com/2013/12/03/build-mobile-apps/

http://openrtm.org/openrtm/en/content/rt-middleware-overview
http://www.anr-proteus.fr/
http://robotml.github.io/RobotMLModelingPlatform/index.html
http://robotml.github.io/IntroductionToRobotML/LifeCycle.html
http://www.autosar.org/
http://www.muensolutions.com/de/app-entwicklung-die-besten-open-source-frameworks-fur-ios-android-und-co.html
http://www.muensolutions.com/de/app-entwicklung-die-besten-open-source-frameworks-fur-ios-android-und-co.html
http://developer.android.com/guide/components/fundamentals.html#Components
http://heise.de/-2146088
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
http://www.xamarin.com/
http://components.xamarin.com/
http://www.android-components.com/
http://mashable.com/2013/12/03/build-mobile-apps/

