
16.09.2013 Christian Schlegel, Alex Lotz et al.

Informatik 2013
Technik Workshop -

Roboterkontrollarchitekturen

16 Sept. 2013, Koblenz

Model-Driven Software Systems
Engineering in Robotics:

Covering the Complete Life-Cycle of a Robot

Christian Schlegel, Alex Lotz, Matthias Lutz, Dennis Stampfer,
Juan F. Ingles-Romero, Cristina Vicente-Chicote

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 2

Cooperative Robot Butler Scenario

http://www.youtube.com/user/RoboticsAtHsUlmhttp://www.servicerobotik-ulm.de/

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 3

Towards a Software Business Ecosystem

Robotics Business Ecosystem:
● Separation of Roles
● Separation of Concerns
● MDSD (Model-Driven SW Developm.)

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 4

Towards a Robotics Software Component Model

● Think SOA rather than message
centric:

A SOA (service-oriented architecture)
has to ensure that services don‘t get
reduced to the status of interfaces,
rather they have an identity of their
own

● Think business ecosystem:

Share risks and efforts between
different stakeholders, reduce costs
and development time and increase
robustness and quality of products

● Think model driven:

Provide a black-box view for
components with explicated services,
properties and configurations

Component Developer
(white box component)

Middleware Expert
(provides mapping from
communication patterns to
Middleware)

System Integrator
(black box view)

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 5

navi-
gation

Component
Builder

specialist with deep
expertise

(return-of-investment
based on multiple use

of components)

„freedom from choice“
in order to ensure

system-level conformity

„inner view“

make
system-level
bindings and
adjustments

uses black-box view
„outer view“

Application
domain
experts

Robot

System
Integrator

Design-Time Run-Time

System
Integration Deployment

Deployment
(add new
components
at run-time)

Component
Development

provide
 „black box“

view including
model-based

variation points

exploit
variation points exploit

variation
points

purposefully
left-open variability

in order to deal
with open-ended

environments
(models@runtime)

Component must be
bindable to

execution platform
at deployment time

without recompilation !!

stepwise refinement: (1) add more and more information, (2) bind more and more variability

hand over hand over

Stepwise Model Refinement with different Roles

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 6

Communication Patterns*

* Christian Schlegel, Andreas Steck, and Alex Lotz. "Model-Driven Software Development
 in Robotics: Communication Patterns as Key for a Robotics Component Model",
 in Introduction to Modern Robotics, ISBN 978-0980733068, iConcept Press, 2011

not missing guidance inside components
but flexible interface consistent with outer semantics
to ease the job of the component developer:
● give freedom to use desired access methods

(sync, async, upcall, etc.)
● give freedom to install desired processing

(passive, thread pool, pipeline, buffers, etc.)

not early platform binding

but late linking to execution container

not variety outside where it affects
system integration, but:
● stable and distinct communication

characteristics for each communication pattern
● avoid complexity of combinatorial explosion of

policies, mechanisms, etc.
● ensure system level conformance (avoid

distributed system deadlocks, etc.)
● avoid incompatible port variants of the same service

16.09.2013 Christian Schlegel, Alex Lotz et al.

Model-Driven
Software

Development
Toolchain

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 8

Robotics Software Component Model + MDSD

Metamodel

● component life-cycle
● monitoring/debugging
● separated internal interface from

outer communication characteristics
● middleware abstraction

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 9

MDSD Toolchain

16.09.2013 Christian Schlegel, Alex Lotz et al.

System Architecture:
Managing Execution
Variants at Run-Time

● SmartTCL:
Managing Variability in
Task Sequencing

● VML:
Managing Variability in
Task Execution Quality

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 11

Sequencer orchestrates the system

The sequencing layer with
SmartTCL:
● bridges between

continuous processing
and event-driven task
execution

● orchestrates software
components in the
system

● assigns decision spaces
to components

● involves dedicated expert
components such as a
symbolic planner for run-
time bindings of designed
variability

● uses a knowledge base to
resolve symbols

● coordinates analysis,
simulation and planning
capabilities

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 12

SmartTCL

(a)
(c)?

(b)

task tree
On the left:

(a) select between alternatives at run-time

(b) handle contingencies

(c) delete, add or replace sub trees at run-time

On the right:
example for a refinement/

expansion of the task
“cleanup-table”

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 13

Non-Functional Properties at Run-Time

The robot needs to trade-off different non-functional properties such as safety and
performance in order to select appropriate execution variants (in this case which
coffee machine to use)

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 14

Variability Modeling Language (VML)*

* Alex Lotz, Juan F. Inglés-Romero, Cristina Vicente-Chicote, Christian Schlegel. Managing run-time variability in
 robotics software by modeling functional and non-functional behavior. EMMSAD 2013. ISBN 978-3-642-38483-7

design-time:
the designer provides the models (action
plots with variation points to be bound
later by the robot, policies for task
fulfillment, problem solvers to use for
binding of variability).

run-time:
the robot decides at run-time on
proper bindings for variation points by
applying the policies taking the current
context into account

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 15

System Architecture: Mapping Execution Variants at Run-Time

(a) SmartTCL handles a
contingency by exchanging
a sub-tree

(b) SmartTCL uses a symbolic
planner to refine a sub-tree

(c) VML as a service on
demand

(d) VML as continuous
service

Integration of “Variability in
Task Sequencing” and
“Variability in Task Execution
Quality”

16.09.2013 Christian Schlegel, Alex Lotz et al. slide 16

Open Challenges and Future Work

● Enable designers to explicate the desired quality-of-service which
the robot achieves at run-time by trading off different execution
variants

● Extend the mechanisms for black-box handover from one role to
another

● Link between S/W models (component settings, resources) and
robot behavioral models (task nets) supported by MDSD
approaches

● Improve the overall development workflow with different roles
which refine the overall system model step by step

● Further improve the handover of knowledge and efforts between
design-time and run-time

16.09.2013 Christian Schlegel, Alex Lotz et al.

Thank you for your attention!

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

