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− Use models for the entire life-cyle of the robot
− Models are refined step-by-step until finally they become executable
− Separate inside view (component builder) from outside view (system integrator)
− Separate stable execution container from implementational technologies (middleware, OS)
− Variation points: design-time (component builder, system integrator), runtime (robot)

● Explicitly model variability for late binding (by system integrator and even by the robot at runtime)
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Separation of Roles: Challenges for MDSD

Goal: Robotics Business Ecosystem
=> requires separation of roles
=> how to achieve this?

MDSD as solution technology
=> needs and priorities guided by separation of roles

MDSD for robotics / Challenges:
• Stepwise refinement instead of strictly linear MDA approach

• Support deployment with late-binding of OS & middleware
• Variability modeling: design-time & run-time exploitation of variability

• for QoS (quaility-of-service) in open-ended environments
• to address non-functional properties

• provide role-specific support:
• component developer, system integrator, robot, application domain expert, ...

• enable hand-over between these roles
• black-box view, explicate and transfer constraints

• provide appropriate infrastructure
• repositories for components & models with distributed access and versioning
• shared and agreed meta-models and competition at implementational level
• support also closed-source components in deployment to protect IP

MDE-support for the full life-cycle of a robotics system
• SW-component model, system model, hardware model, behavior model, etc. etc.
• Role models, Workflows and transformations
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• Edward A. Lee
• „Modeling languages that are not executable, or where the execution semantics is vague 

  or undefined are not much better than TUML (The Truly Unified Modeling Language)“.
• „We have to stop thinking of constraints as a universal negative!!!“
• „Freedom from Choice“ instead of „Freedom of Choice“

• Robotics systems
• OMG MDA approach PIM => PSM => PSI is too linear
• In robotics systems, 

• parts of the hardware model (PSM, PSI) already needed at PIM level:
(e.g., sensors and their mountings strongly influence algorithmic options)
explicate / hand-over constraints from PIM to PSM to PSI

• Separation of Roles
• Component Developer: provide component to component shelf (not necessarily bound to middleware etc.)
• System Integrator: picks-up component and binds it to target platform
• Both: need to understand provided / required services

• SmartMDSD covers a service-oriented component and system model with a focus on 
separation of roles and separation of concerns
• component, port semantics, lifecycle, system composition, deployment, runtime, variability modeling, etc.
• component execution container

• decouples inside view / outside view / OS / middleware, …
• explicates variability and constraints for the various roles

Separation of Roles: Challenges for MDSD
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Transformation is enrichment (semantic 
gap), not just translation (syntactic level)
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explicate constraints (required sensor position,
OS constraints etc.) introduced with user code

not variety outside where it affects 
system integration:
- avoid complexity of combinatorial 
   explosion of policies, mechanisms 
   etc.
- ensure system level conformance
   (avoid distributed systems deadlocks
    etc.)
- avoid incompatible port variants of 
   the same service

but variety inside to ease 
job of developer:
- give freedom to use 
  desired access methods
  (sync, async, upcall, etc.)
- give freedom to install
  desired processing
  (passive, thread-pool, 
   pipeline, buffers, etc.)

The SmartMDSD Toolchain: Assumptions...

The major focus is not: are the internals of the middleware are developed based on MDSD?
but is on a workflow that supports separation of roles / concerns by means of MDSD
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The SmartMDSD Toolchain: Assumptions...
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The SmartMDSD Toolchain:
Standard Sequential Workflow According to MDA

• OMG MDA is not perfectly fitting (too linear) since we need stepwise refinements 
(more and more bindings of variability across the different and separated roles)

• e.g. component builder
• uses SmartMARS to specify component hull (stable internal structure and interface: red)
• generates code of component hull (red & green interfaces provided as templates and via generation gap pattern) 

and adds user code (yellow) 
• e.g. system integrator

• exploits left open variability for adjusting settings of components
• specifiies target platform during deployment step
• deployment step adds implementation of execution container & links platform specific libraries 

(links together red, green, brown parts etc. as marked by pink coloring)

  => we need late binding of execution container (middleware / OS) and variation points during deployment
  => we need to support selling closed components as object files (intellectual property) with late deployment
  => we (perhaps also) need to be able to compile several components into a single process 
       (as with embedded systems)
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SmartMDSD Toolchain:
currently implemented traditional MDA workflow / automized steps



11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 9 - 25

The SmartMDSD Toolchain:
Stepwise-Refinement Workflow / current work in progress

Component Level: PIM => PSM => PSIcomponent
developer

system
integrator

System Level: PIM => PSM => PSI

robot

SmartMARS
component builder view
• build component model and generate
  component hull with explicated 
  constraints (bindings, variability)
• add user code
• provide black-box view

SmartMARS
system integrator view
• design deployment  / system model
• bind variability for a balanced
 system integration
• use black-box component models
• use models of target platforms
• bind against middleware 

SmartMARS
robot run-time view

Run-Time Level: PIM => PSM => PSI

• User: add user code
• Toolchain: 
   - generation gap pattern
   - templates

• Toolchain:
   link platform-specific libraries
   for execution container

hand 
over

hand 
over

component model and object / binary
• models of valid bindings for variability
• constraints with respect to system 
 integration (e.g. x86, RTAI, etc.)

Run-time model

Run-time model and executable
• models of run-time variability

+

+

Executables+
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SmartMDSD Toolchain:
Stepwise-Refinement Workflow / current work in progress

can even be platform-specific
=> adds constraints to component model
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• Graphical or textual editor needs additional annotations on top of Ecore
• Methods (Ecore: operations) are not explicated in this diagram
• Not all communication patterns are shown in this diagram (event, diagnose, state, etc.)

Excerpt of SmartMARS as Ecore diagram
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Excerpt SmartMARS / PIM: Component Builder View / Ecore
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Excerpt SmartMARS / PSM: System Integrator View / Ecore
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SmartMARS / PIM: 
Component Builder View as UML profile

• Implementation as UML profile gives graphical editor for free
• SmartMARS does not depend on UML
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Model-Driven Software Development
Model Transformation + Code Generation

Transformation PIM into PSM

Generation Gap Pattern / Technical View:
• stable user interface [e.g. MyTask] even when 

platform is changed
• platform-specific internals / internal 

implementations are added transparently

SmartSoft
- MDSD details -
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Model-Driven Software Development
PIM to PSM / SmartTask / isRealtime

Xtend Transformation Rule (M2M):
PIM to PSM model transformation of the SmartTask depending on the attribute “isRealtime”

SmartSoft
- MDSD details -



11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 17 - 25

Model-Driven Software Development
PSM to PSI

Xpand / Xtend Transformation (M2T): PSM to PSI model transformation

SmartSoft
- MDSD details -
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Additional Slides
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Model-Driven Software Development
SmartMARS UML Profiles (PIM, PSM)

excerpts of UML Profile created with Papyrus UML (left PIM, right PSM)

SmartSoft
- MDSD details -
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SmartOpenRave Component
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SmartOpenRave Component
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Model-Driven Software Development:
Component Builder View
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Model-Driven Software Development:
System Integrator View
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Component Shelf
Reusable Components

System Integration

base navi-
gation

speech ...

System Level Properties / Bindings / Conformance Checks

Model-Driven Software Development:
System Integrator View
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