
11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 1 - 25

Robotics MDE Workshop

Leuven, 11th February 2013
Separation of Roles: Challenges for MDSD

SmartSoft MDSD and its Transformations:
Meta-Model, PIM, PSM, PSI

M.Sc. Alex Lotz Prof. Dr. Christian Schlegel

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 2 - 25

− Use models for the entire life-cyle of the robot
− Models are refined step-by-step until finally they become executable
− Separate inside view (component builder) from outside view (system integrator)
− Separate stable execution container from implementational technologies (middleware, OS)
− Variation points: design-time (component builder, system integrator), runtime (robot)

● Explicitly model variability for late binding (by system integrator and even by the robot at runtime)

navi-
gatio

n

Component
Builder

specialist with deep
expertise

(return-of-investment
based on multiple use

of components)

„freedom from choice“
in order to ensure

system-level conformity

„inner view“

make
system-level
bindings and
adjustments

uses black-box view
„outer view“

Application
domain
experts

Robot
System
Integrator

Design-Time Run-Time

System
Integration Deployment

Deployment
(add new components
at run-time)

Compoent
Development

provide
 „black box“

view including
model-based

variation points

exploit
variation points exploit

variation points
purposefully

left-open variability
in order to deal with

open-ended
environments

(models@runtime)
Component must be

bindable to
execution platform
at deployment time

without recompilation !!

stepwise refinement: (1) add more and more information, (2) bind more and more variability

Separation of Roles: Challenges for MDSD

hand over hand over

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 3 - 25

Separation of Roles: Challenges for MDSD

Goal: Robotics Business Ecosystem
=> requires separation of roles
=> how to achieve this?

MDSD as solution technology
=> needs and priorities guided by separation of roles

MDSD for robotics / Challenges:
• Stepwise refinement instead of strictly linear MDA approach

• Support deployment with late-binding of OS & middleware
• Variability modeling: design-time & run-time exploitation of variability

• for QoS (quaility-of-service) in open-ended environments
• to address non-functional properties

• provide role-specific support:
• component developer, system integrator, robot, application domain expert, ...

• enable hand-over between these roles
• black-box view, explicate and transfer constraints

• provide appropriate infrastructure
• repositories for components & models with distributed access and versioning
• shared and agreed meta-models and competition at implementational level
• support also closed-source components in deployment to protect IP

MDE-support for the full life-cycle of a robotics system
• SW-component model, system model, hardware model, behavior model, etc. etc.
• Role models, Workflows and transformations

Application
Domain
Expert

Robotics
Expert

System
Integrator

Robot

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 4 - 25

• Edward A. Lee
• „Modeling languages that are not executable, or where the execution semantics is vague

 or undefined are not much better than TUML (The Truly Unified Modeling Language)“.
• „We have to stop thinking of constraints as a universal negative!!!“
• „Freedom from Choice“ instead of „Freedom of Choice“

• Robotics systems
• OMG MDA approach PIM => PSM => PSI is too linear
• In robotics systems,

• parts of the hardware model (PSM, PSI) already needed at PIM level:
(e.g., sensors and their mountings strongly influence algorithmic options)
explicate / hand-over constraints from PIM to PSM to PSI

• Separation of Roles
• Component Developer: provide component to component shelf (not necessarily bound to middleware etc.)
• System Integrator: picks-up component and binds it to target platform
• Both: need to understand provided / required services

• SmartMDSD covers a service-oriented component and system model with a focus on
separation of roles and separation of concerns
• component, port semantics, lifecycle, system composition, deployment, runtime, variability modeling, etc.
• component execution container

• decouples inside view / outside view / OS / middleware, …
• explicates variability and constraints for the various roles

Separation of Roles: Challenges for MDSD

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 5 - 25

Transformation is enrichment (semantic
gap), not just translation (syntactic level)

Meta-Model

Model

<<instance of>>

to
p-

do
w

n ,
 o

ne
-w

ay
,

re
fin

em
en

t

ro
un

d-
tr

ip
pi

ng
 (

up
w

ar
d)

:
se

m
an

tic
 g

ap
s

Model

<<...>>
ROS Port

<<...>>
SmartSoft Port

<<...>>
OROCOS Port

<<...>>
...

<<...>>
Port

no
t

ea
rly

 p
la

tf
or

m
 b

in
di

ng
 w

ith
ro

un
d-

tr
ip

pi
ng

 t
ra

n s
fo

rm
at

io
n

but late linking to
implementation of
execution container

Add
User Code

Add
User Code

Add
User Code

Add
User Code

Add
User Code

<<...>>
Port

ROS

ACECORBA DDS

OROCOS
SmartSoftRobotML

explicate constraints (required sensor position,
OS constraints etc.) introduced with user code

not variety outside where it affects
system integration:
- avoid complexity of combinatorial
 explosion of policies, mechanisms
 etc.
- ensure system level conformance
 (avoid distributed systems deadlocks
 etc.)
- avoid incompatible port variants of
 the same service

but variety inside to ease
job of developer:
- give freedom to use
 desired access methods
 (sync, async, upcall, etc.)
- give freedom to install
 desired processing
 (passive, thread-pool,
 pipeline, buffers, etc.)

The SmartMDSD Toolchain: Assumptions...

The major focus is not: are the internals of the middleware are developed based on MDSD?
but is on a workflow that supports separation of roles / concerns by means of MDSD

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 6 - 25

The SmartMDSD Toolchain: Assumptions...

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 7 - 25

The SmartMDSD Toolchain:
Standard Sequential Workflow According to MDA

• OMG MDA is not perfectly fitting (too linear) since we need stepwise refinements
(more and more bindings of variability across the different and separated roles)

• e.g. component builder
• uses SmartMARS to specify component hull (stable internal structure and interface: red)
• generates code of component hull (red & green interfaces provided as templates and via generation gap pattern)

and adds user code (yellow)
• e.g. system integrator

• exploits left open variability for adjusting settings of components
• specifiies target platform during deployment step
• deployment step adds implementation of execution container & links platform specific libraries

(links together red, green, brown parts etc. as marked by pink coloring)

 => we need late binding of execution container (middleware / OS) and variation points during deployment
 => we need to support selling closed components as object files (intellectual property) with late deployment
 => we (perhaps also) need to be able to compile several components into a single process
 (as with embedded systems)

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 8 - 25

SmartMDSD Toolchain:
currently implemented traditional MDA workflow / automized steps

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 9 - 25

The SmartMDSD Toolchain:
Stepwise-Refinement Workflow / current work in progress

Component Level: PIM => PSM => PSIcomponent
developer

system
integrator

System Level: PIM => PSM => PSI

robot

SmartMARS
component builder view
• build component model and generate
 component hull with explicated
 constraints (bindings, variability)
• add user code
• provide black-box view

SmartMARS
system integrator view
• design deployment / system model
• bind variability for a balanced
 system integration
• use black-box component models
• use models of target platforms
• bind against middleware

SmartMARS
robot run-time view

Run-Time Level: PIM => PSM => PSI

• User: add user code
• Toolchain:
 - generation gap pattern
 - templates

• Toolchain:
 link platform-specific libraries
 for execution container

hand
over

hand
over

component model and object / binary
• models of valid bindings for variability
• constraints with respect to system
 integration (e.g. x86, RTAI, etc.)

Run-time model

Run-time model and executable
• models of run-time variability

+

+

Executables+

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 10 - 25

SmartMDSD Toolchain:
Stepwise-Refinement Workflow / current work in progress

can even be platform-specific
=> adds constraints to component model

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 11 - 25

• Graphical or textual editor needs additional annotations on top of Ecore
• Methods (Ecore: operations) are not explicated in this diagram
• Not all communication patterns are shown in this diagram (event, diagnose, state, etc.)

Excerpt of SmartMARS as Ecore diagram

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 12 - 25

Excerpt SmartMARS / PIM: Component Builder View / Ecore

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 13 - 25

Excerpt SmartMARS / PSM: System Integrator View / Ecore

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 14 - 25

SmartMARS / PIM:
Component Builder View as UML profile

• Implementation as UML profile gives graphical editor for free
• SmartMARS does not depend on UML

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 15 - 25

Model-Driven Software Development
Model Transformation + Code Generation

Transformation PIM into PSM

Generation Gap Pattern / Technical View:
• stable user interface [e.g. MyTask] even when

platform is changed
• platform-specific internals / internal

implementations are added transparently

SmartSoft
- MDSD details -

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 16 - 25

Model-Driven Software Development
PIM to PSM / SmartTask / isRealtime

Xtend Transformation Rule (M2M):
PIM to PSM model transformation of the SmartTask depending on the attribute “isRealtime”

SmartSoft
- MDSD details -

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 17 - 25

Model-Driven Software Development
PSM to PSI

Xpand / Xtend Transformation (M2T): PSM to PSI model transformation

SmartSoft
- MDSD details -

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 18 - 25

Additional Slides

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 19 - 25

Model-Driven Software Development
SmartMARS UML Profiles (PIM, PSM)

excerpts of UML Profile created with Papyrus UML (left PIM, right PSM)

SmartSoft
- MDSD details -

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 20 - 25

SmartOpenRave Component

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 21 - 25

SmartOpenRave Component

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 22 - 25

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 23 - 25

Model-Driven Software Development:
Component Builder View

S
cr

ee
nc

as
t

„B
ui

ld
 a

 C
om

p o
ne

nt
 H

ul
l“

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 24 - 25

Model-Driven Software Development:
System Integrator View

11.02.2013 Lotz, Schlegel @ Robotics MDE Workshop, Leuven 25 - 25

Component Shelf
Reusable Components

System Integration

base navi-
gation

speech ...

System Level Properties / Bindings / Conformance Checks

Model-Driven Software Development:
System Integrator View

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

