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Abstract— Service robots act in open-ended, natural environ-
ments. Therefore, due to combinatorial explosion of potential
situations, it is not possible to foresee all eventualities in advance
during robot design. In addition, due to limited resources on a
mobile robot, it is not feasible to plan any action on demand.
Hence, it is necessary to provide a mechanism to express
variability at design-time that can be efficiently resolved on
the robot at run-time based on the then available information.

In this paper, we introduce a DSL to express run- time vari-
ability focused on the execution quality of the robot (in terms of
non-functional properties like safety and task efficiency) under
changing situations and limited resources. We underpin the
applicability of our approach by an example integrated into an
overall robotics architecture.

I. INTRODUCTION

Advanced robotic systems like service robots (robot com-
panion, elder care, home health care, robot co-worker) are ex-
pected to robustly and efficiently fulfill different tasks (multi-
purpose systems) in complex environments (domestic, out-
door, public spaces). While robots are always only equipped
with a limited set of resources (processing power, energy
supply, sensing capabilities, skills), real-world environments
are inherently open-ended and show a huge number of vari-
ants and contingencies. Thus, for many different situations,
a robot needs to know how to spend its scarce resources
in the most appropriate way (in short, acting efficiently) in
order to achieve a high degree of robustness and to maintain
a high success rate in task fulfillment. Although to date the
focus still is mostly on pure task achievement (i.e., on robot
functionality like in [1]), balancing non-functional properties
(e.g., quality of service, safety and energy consumption)
becomes more and more important and cannot be ignored
in advanced service robotic systems.

Even the most skilled robotics engineer is not able to
identify and enumerate all eventualities in advance and to
properly code configurations, resource assignments and reac-
tions at design-time (not to mention that this is not efficient at
all due to the combinatorial explosion of possible situations
and skill parameterizations). Unfortunately, it is also not
possible just to (re)plan at run-time in order to take into
account latest information as soon as it becomes available.
The computational complexity of planning is far too high
when it comes to real-world problems (i.e., generate action
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plots given partial information while taking into account
additional properties like safety and resource awareness).

This motivates a different approach: (i) we need to make
it as simple as possible for the designer to express variability
at design-time and (ii) we need the robot to be able to
bind variability at run-time based on the then available
information. At design time, we also specify which problem
solver (symbolic planner, constraint solver, etc.) to use to
bind which variation point [2], [3]. At run-time, the robot
then involves the prearranged and dedicated problem solvers.
Overall, this improves task execution quality, optimizes robot
performance and cleverly arranges complexity and efforts
between design-time and run-time.

  

How to get the coffee
to the customer as
hot as possible?

Fig. 1. Our robot Kate makes coffee

Let’s illustrate this by an example scenario: a service robot
delivers coffee on demand (see fig. 1). In order to optimize
the coffee delivery service, the robot has to trade-off various
aspects to come up with an optimized quality of service. The
robot needs to be able to select an appropriate velocity (vari-
ation point) to properly fulfill its task according to further
issues like safety and energy: (i) customers are satisfied only
if the coffee has at least a certain temperature but prefer it as
hot as possible, (ii) however, the maximum allowed velocity
is bound due to safety issues (hot coffee) and also by battery
level, (iii) since coffee cools down depending on the time
travelled, a minimum required average velocity (depending
on distance to customer) is needed, although driving slowly
makes sense in order to save energy, (iv) nevertheless, fast
delivery can increase volume of coffee sales.

The late binding of variability (variation points purpose-
fully left open by the designer) allows for a clever way of
complexity handling according to the following principles:



Separation of concerns: a model (e.g., a task net) describes
how to deliver a coffee (i.e., the action plot) [3]. Further
models specify what is a good way (policy) of delivering a
coffee (e.g., in terms of non-functional properties like safety
or energy consumption).

Separation of roles: the designer provides at design-time
the models (action plots with variation points to be bound
later by the robot, policies for task fulfillment, problem
solvers to use for binding of variability). The robot decides at
run-time on proper bindings for variation points by applying
the policies and taking into account current situation and
context.

With this approach, the design-time modeling effort stays
feasible even when extending task plots to non-functional
properties like safety and energy consumption. On the other
hand, even under non-functional constraints, run-time deci-
sions on variation points become feasible due to narrowed
search spaces. At the same time, this allows to much better
address open-ended environments since policies (what is a
good way of parameterizing a task plot) can come up at
run-time with bindings of variability without enumerating
all possible situations in advance. However, this requires
means to express variability at design-time – in particular
on non-functional properties – such that it can be exploited
at run-time.

In this paper, we introduce a first version of a Domain-
Specific Language (DSL) for expressing run-time variability.
It provides a mechanism to specify how a system should
adapt to cope with changing situations in order to maintain or
improve the execution quality of the system (in terms of non-
functional properties like safety and task efficiency). We also
describe the integration of the DSL into an overall robotics
architecture. A real-world example underpins the feasibility
of the approach and illustrates its benefits. We conclude with
hints on next steps towards a full-fledged DSL and system
integration.

II. VARIABILITY MODELING LANGUAGE

In this section we present the Variability Modeling Lan-
guage (VML) that provides a mechanism to express how
a system should adapt at run-time based on non-functional
properties and adaptation rules. First, we introduce the over-
all idea behind the proposed language. After that, we address
the VML syntax and the specification of the semantics.

A. Overview

Following the coffee-delivering example presented in the
introduction, the service quality of a system can be given in
terms of non-functional properties, such as, safety, perfor-
mance and energy consumption. These properties are often
contradictory and conflicting, and their importance varies
according to the current system context (e.g., if the battery of
the robot is low, energy consumption has a higher priority).
Properties are expressed as functions of variation points, i.e.,
system variables left open at design time and bound at run-
time (e.g., the average velocity impacts on performance since
a fast delivery can increase the volume of coffee sales).

Therefore, binding variation points results in a certain quality
of service (e.g., depending on the concrete value for the
average velocity, the robot is more or less efficient, safe or
energy consuming). The objective is to maximize the quality
of service through the configuration of the variation points
each time the system context changes significantly. Finally,
the variation points can be constrained depending on the
context using adaptation rules. As shown in figure 2, we
have already presented all the keys of VML: variation points,
context, properties and adaptation rules.

VML model System

output

input

Components
SmartTCL
...

(context values)

(variation point bindings)

Variation points
Contexts
QoS properties
Adaptation rules

Fig. 2. VML Models and the interaction with the system (see sec. III)

B. VML Syntax

Listing 1 shows the EBNF grammar of the VML language.
The use of VML will be later illustrated in section IV with
full-fledged examples.
VMLModel ::= ( TypeDefinition | VariableDefinition | AdaptationRule )+
TypeDefinition ::= EnumType | NumericType | BooleanType
EnumType ::= ’enum’ ID { ( EnumLiteral ; )+ }
EnumLiteral ::= ID (’(’ INT ’)’)?
NumericType ::= ’number’ ID ’{’ ’range’ ’:’ ’[’ (REAL|INT) ’,’ (REAL|INT) ’]’ ’;’
’precision’ ’:’ (REAL|INT) ’;’ ( ’unit’ ’:’ STRING ’;’ )? ’}’

BooleanType ::= ’boolean’ ID ’;’
VariableDefinition ::= GeneralVar | Context | VariationPoint | Property
GeneralVar ::= ’var’ ID ’:’ ID ’=’ expr ’;’
Context ::= ’context’ ID ’:’ ID ’;’
VariationPoint ::= ’varpoint’ ID ’:’ ID ( ’;’ | ’{’
(InvariantDefinition | ImplicationDefinition) (’,’
(InvariantDefinition | ImplicationDefinition) )* ’;’ ’}’

Property ::= ’property’ ID ’:’ ID (’maximized’|’minimized’)? ’{’
’priorities’ ’:’ FunctionDefinition (’,’ FunctionDefinition)* ’;’
’definitions’ ’:’ FunctionDefinition ( ’,’ FunctionDefinition)* ’;’ ’}’

AdaptationRule ::= ’rule’ ID ’:’ ImplicationDefinition’;’

Listing 1. EBNF grammar of the Variability Modeling Language (VML).
Due to lack of space, we only include a reduced version of the grammar
instead of a full syntax specification.

VML is a declarative language that allows the definition
of: data types, variables, and adaptation rules. Data types are
used to define the nature of the variables, i.e., their possible
values and operations. VML includes three basic data types:
(i) enumerators; (ii) ranges of numbers; and (iii) booleans.
Enumerators are defined by a list of literals that represent a
set of unique values masked by alias. Per default, the i-th
literal in the enumerator is coded as the integer i. Ranges
of numbers define intervals of discrete values. They require
the specification of the interval limits and the precision
to discretize the interval. Optionally, they can declare the
physical unit (e.g., m/s for velocity), which is taken into
account for conversions and normalization (further details
in next subsection). Arithmetic operations can be applied to
enumerators and ranges of numbers while logical operations
to booleans.

Regarding variables, VML includes three kinds of special-
purpose variables (Contexts, Variation points and Properties)
and one general-purpose variable for auxiliary calculations.
Each variable is declared to belong to a certain data type,
which needs to have been previously defined as explained
before. Context variables specify the internal and external



environment features on which adaptation depends (e.g.,
listing 3 / section IV: ctx battery is a context variable).
Variation points denote the variability of the system (e.g.,
listing 3: maximumVelocity). The definition of these
variables may optionally include a set of invariants and
implications (used to constrain their possible values and to
define their dependencies on other variation points).

At this point, we have introduced context variables, which
are intended to capture the system context, and variation
points, which represent the variability that is left open at
design-time and must be bound at run-time. In this sense,
we can consider context variables as inputs of the adaptation
process and (the values selected for all) variation points as its
outputs. Now, we introduce the elements that describe how
the system should adapt, i.e., how the outputs must be set
considering the inputs. This is achieved through properties
(the last special-purpose kind of variable), and adaptation
rules. Properties specify the features of the system that
need to be optimized, i.e., minimized or maximized (see
energyConsumption and performance in listing 3).
Properties are defined by two kinds of functions: priorities
and definitions. Definitions describe the property in terms
of one or more variation points; e.g., in listing 3, the
energyConsumption property is defined as an expo-
nential function depending on the maxVelocity varia-
tion point, meaning that changes in the maximum speed
have an exponential impact on the energy consumption. On
the other hand, priorities describe the importance of each
property in terms of one or more context variables; e.g.,
energyConsumption becomes more and more relevant
as the robot battery (ctx battery) decreases, resp., when
the battery is full, energy consumption is not considered an
issue and, thus, its impact on the adaptation process is very
small. Note that the definition of these functions has been
obtained empirically.

Adaptation rules define direct relationships between the
context variables and the variation points (properties also
relate them but indirectly). Adaptation rules are ECA (event-
condition-action) rules, i.e., their left-hand side expresses
a condition (depending on one or more context variables)
for the rule to be triggered, and their right-hand side con-
strains the output variation point (i.e., the values it can
take). For example, the rule low noise in listing 3 forces
speakerVolume to 35 when ctx noise is less than 20.

C. VML Execution Semantics and Implementation

Executing a VML model means finding the best configu-
ration possible (bindings for the variation points) given the
current context. Let ctx be an n-tuple of the values associated
to each context variable in the model, i.e, ctx = c0, . . . , cn−1
where ci is the value of the i-th context variable and n the
number of context variables in the model. Let vp be an m-
tuple of the values associated to each variation point in the
model, i.e., vp = v0, . . . , vm−1 where vi is the value of the
i-th variation point and m the number of variation points in
the model.

Given a certain context ctx, we need to find vp that mini-
mizes the cost function f(ctx, vp) subject to the constraints
imposed by the adaptation rules that verify the right side
condition and by the dependencies of the variation points:

f(ctx, vp) =
∑
∀i

(−1)di · wi(ctx) · pi(vp) (1)

wi(ctx) is the normalized sum of the priority functions,
pi(vp) the normalized sum of the definition functions as-
sociated to the i-th property in the model, and di specifies
whether the i-th property should be minimized (di = 0) or
maximized (di = 1).

The normalization process is required in order to make
variables comparable. First, the process homogenizes the
variable units (if declared), and then, the variables are scaled
to [0, 100] according to their range definitions in the models.

For execution of VML models, we took advantage of
existing constraint solvers to deal with the required constraint
optimization problems. We have selected MiniZinc [4] for the
run-time support of the VML models, since it is a simple and
expressive modeling language, which is independent of the
solver. MiniZinc is currently supported by many constraint
programming systems, among others, the G12 Constraint
Programming Platform1.

Although this is work in progress, we have created a
preliminary textual editor for the VML language using
the Model-Driven Engineering (MDE) tools available in
Eclipse [5]. The editor has some advanced features such as
syntax checking, colouring and completion.

III. INTEGRATION INTO A ROBOTICS ARCHITECTURE

The overall integration into a robotics architecture is
shown in figure 3. The sequencer orchestrates the system
and its software components [3] (send parameters/configura-
tions; switch components on/off; change the wiring between
components; query information; wait for events; coordinate
analysis, simulation and planning capabilities).

The overall approach of task decomposition for be-
havioural variability follows the subsidiarity principle in
order to cope with the challenge of incorporating different
control schemes. The principle of the run-time task exe-
cution can be compared with a company where budgets
and responsibilities are assigned down the hierarchy and
where, at the same time, rational decisions and activities
are expected. Hierarchy is needed in order to ensure that
the assigned decision spaces are not in conflict with each
other (these have to be either orthogonal or exploit only a
limited budget of a shared resource). Hierarchy is motivated
by the fact that a single robot, as one entity, can at the end
only be at one location. Indeed, hierarchy is compatible with
decentralized control (including adaptation capabilities at
different hierarchical layers) promoting autonomous or semi-
autonomous adaptation to rapidly changing environments and
circumstances (which is essential in robotics).

1http://www.g12.csse.unimelb.edu.au/
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Fig. 3. Exploiting variability in an integrated robotics architecture. In SMARTTCL, a task-tree is specified at design-time. Several variation points are
left open and bound at run-time: (a) reacting to execution flaws by adapting task-net expansions to the current situation, (b) expert called to give advice
(query): symbolic planner as expert for situation-dependent run-time task node expansion (e.g., planning how to stack the different cups into each other
when cleaning a table), (c) expert called to give advice (query): a constraint solver as expert for run-time binding of variation points in task nets (e.g.,
binding maximum velocity depending on safety constraints according to current payload), (d) expert configured for periodic advice (push): configure for
advice on orthogonal parameters (e.g., constraining minimum / maximum velocity as decision space for navigation component as in coffee delivery example;
the navigation then decides within given changing boundaries on actual velocity taking into account current obstacles).

Thus, following the subsidiarity principle, we have chang-
ing hierarchies with decentralized control following a delega-
tion model. Task execution results in task refinements which
come along with run-time binding of purposefully left open
variability. Coming up with more and more bindings down
the hierarchy of task refinements imposes constraints onto the
subordinated entities (or put it the other way round: assigns
down the hierarchy decision spaces as broad as possible
while ensuring that these locally exploitable variability is
not in conflict with concurrent activities).

The sequencer plays the master role in our multilayered
robotic architecture and assigns decision spaces down the
hierarchy to the skill components (see fig. 3 on the top
left). Thereto, the sequencer parametrizes skill components
such that they can bind variation points within predefined
boundaries. For example, according to the current task, the
sequencer sets reasonable boundaries for maximum trans-
lation and rotation velocities in the Curvature Distance
Lookup (CDL) [6] component for obstacle avoidance. CDL
is then free to choose slower velocity values (e.g., in
case an obstacle is in the way of the robot). Thus, the
sequencer delegates the responsibility to bind the variation
point maximumVelocity (list. 3) within predefined limits
to the CDL component. Second, the sequencer itself is able
to deal with variability as illustrated in (a) and (b) (fig. 3). In
(a) it is possible to model sophisticated recovery strategies

(e.g., in case a skill component fails to fulfill its task or
the situation resp. context around the robot changes). In (b)
it is also possible to purposefully leave open the expansion
plan for certain nodes of the task-net at design-time to ask
a symbolic planer (as an expert for certain problems) later
at run-time for a proper sequence of child-nodes. The cases
(c) and (d) are of particular importance since they show the
interactions between the sequencer, the skill components and
the constraint solver which physically runs the VML models
(see next section for more details).

IV. FULL-FLEDGED REAL-WORLD EXAMPLE

In this section, we illustrate our proposal by a simple
scenario based on the coffee-delivering example given in
the introduction. The case study takes place in a room
with two coffee machines located in different positions (see
fig. 4). Our robot called Kate, moves around in the scenario
meeting people. Thus, when someone asks her for a cup
of coffee she must decide: (i) which coffee machine she
will use, (ii) her maximum allowed velocity, and (iii) her
speaker volume (speak up in noisy environments while not
shouting in quiet environments significantly improves social
acceptance of the robot). This decision is made at run-
time in order to improve the quality of the service taking
into account energyConsumption (e.g., when the battery
is low the system must optimize energyConsumption
using the nearest coffee machine) and performance (e.g.,



trying to get the highest value for maximum allowed ve-
locity in order to reach the goal earlier). Obviously, max-
imizing performance, while simultaneously minimizing
energyConsumption, imposes conflicting requirements.
Thus, the adaptation strategy will need to find the right bal-
ance among these requirements to achieve the best possible
configuration for a given context, even if some (or none) of
them are optimized individually.

The scenario has been specified in two VML models.
Listing 2 shows the first one, which includes the following
context variables: (i) the ctx battery (integer value in
the range 5-100); (ii) distance to each coffee machine (real
number in the range 0-20 with precision 0.1 and meters);
(iii) waiting time at each coffee machine (integer in the
range 10-300 and seconds), it considers the operation time
of the machine (constant time) and the time that the robot
has to wait because the machine is busy and there may be
others (robots or people) waiting to use the machine (vari-
able time); and (iv) ctx maxAllowedVelocity (real
value in the range 100-600 with precision 0.1 and mm/s).
The selection of the coffee machine is described by four
adaptation rules. Basically, the first two rules prioritize
the energyConsumption when the battery is low (less
than 15%), selecting the nearest coffee machine. The last
two rules prioritize the performance if the battery is
high enough, selecting the machine with lower waiting
time (thereby taking longer travel distance into account but
minimizing the overall processing time).
/* Data type definitions */
number batteryType { range: [5,100]; precision: 1; }
number velocityType { range: [100,600]; precision: 0.1; unit: "mm/s"; }
number distanceType { range: [0,20]; precision: 0.1; unit: "m"; }
number timeType{range: [10,300]; precision: 1; unit: "s";}
enum machineType { COFFEE_MACHINE_A; COFFEE_MACHINE_B; }
/* Contexts */
context ctx_battery : batteryLevelType;
context ctx_distanceMachine_A : distanceType;
context ctx_distanceMachine_B : distanceType;
context ctx_waitingTimeMachine_A : timeType;
context ctx_waitingTimeMachine_B : timeType;
context ctx_maxAlowedVelocity : velocityType;
/* Auxiliary variables */
var timeMachine_A = ctx_waitingTimeMachine_A + ctx_distanceMachine_A /

ctx_maxAlowedVelocity;
var timeMachine_B = ctx_waitingTimeMachine_B + ctx_distanceMachine_B /

ctx_maxAlowedVelocity;
/* Adaptation rules */
rule lowBattery_NearMachineA : ctx_battery < 15 & ctx_distanceMachine_A <

ctx_distanceMachine_B => coffeeMachine = COFFEE_MACHINE_A;
rule lowBattery_NearMachineB : ctx_battery < 15 & ctx_distanceCM_A >=

ctx_distanceCM_B => coffeeMachine = COFFEE_MACHINE_B;
rule high_EFF_coffeeMachA : ctx_battery >= 15 & timeMachine_A > timeMachine_B =>

coffeeMachine = COFFEE_MACHINE_A;
rule high_EFF_coffeeMachB : ctx_battery >= 15 & timeMachine_A <= timeMachine_B =>

coffeeMachine = COFFEE_MACHINE_B;
/* Variation Points */
varpoint coffeeMachine : machineType;

Listing 2. VML Model for choosing Coffee Machine

/* Data type definitions */
number percentType { range: [0,100]; precision: 1; }
number velocityType { range: [100,600]; precision: 0.1; unit: "mm/s"; }
/* Contexts */
context ctx_battery : percentType;
context ctx_noise : percentType;
/* Adaptation rules */
rule low_noise: ctx_noise < 20 => speakerVolume = 35;
rule medium_noise: ctx_noise >= 20 & ctx_noise < 70 => speakerVolume = 55;
rule high_noise: ctx_noise >= 70 => speakerVolume = 85;
/* Properties */
property performance : percentType maximized {

priorities: f(ctx_battery) = max(exp(-ctx_battery/15)) - exp(-ctx_battery/15);
definitions: f(maximumVelocity) = maximumVelocity; }

property energyConsumption : percentType minimized {
priorities: f(ctx_battery) = exp(-1 * ctx_battery / 15);
definitions: f(maximumVelocity) = exp(maximumVelocity / 150); }

/* Variation points */
varpoint maximumVelocity : velocityType;
varpoint speakerVolume : percentType;

Listing 3. VML Model for adapting Velocity and Speaker Volume

Regarding the second model, shown in listing 3, the
context variables are: (i) the battery level (integer value in the
range 0-100) and (ii) the ambient noise level (integer value in
the range 0-100). In this case, the speaker volume is modified
depending on the ambient noise level as shown in the
adaptation rules. Furthermore, maximum velocity is adjusted
based on the optimization of the properties performance
and energyConsumption. Note that the variation point
maximumVelocity from this model is used as input (e.g.,
context) in the first model in listing 2. Finally, we also com-
ment that all the mathematical descriptions of the functions
in the VML models have been obtained empirically.

Listing 4 shows the MiniZinc model obtained from the
VML model shown in listing 3. The translation from the
VML to the MiniZinc models is based on the following
mapping rules: (i) Context variables are translated into
parameters (lines 2-3); (ii) Variation points into decision
variables (lines 12-13); (iii) Adaptation rules and variation
points dependencies appear as constraints (lines 15-17); and
(iv) Properties form the cost function to be minimized (lines
33-34), which uses a set of auxillary constraints (lines 19-31)
for linear approximations (since many constraint solvers do
not support real functions). Note that the constraint solver
needs concrete values for the parameters in the model (the
concrete context). These values can be either fixed in the
model or passed to the solver as inputs.

1 % Context Parameters
2 int: ctx_battery;
3 int: ctx_ambientNoise;
4 % Auxiliary Parameters
5 float: priority_performance = ( exp(-5.0/15.0) -
6 exp(-1.0 * int2float(ctx_battery) / 15.0) ) /
7 ( exp(-5.0/15.0) - exp(-100.0/15.0) );
8 float: priority_energy =
9 (exp(-1.0*int2float(ctx_battery)/15.0) - exp(-100.0/15.0))

10 / ( exp(-5.0/15.0) - exp(-100.0/15.0) );
11 % Variantion points
12 var 100.0..600.0: maxVelocity;
13 var 0..100: speakerVolume;
14 % Constraints
15 constraint ctx_ambientNoise < 20 -> speakerVolume = 35;
16 constraint ctx_ambientNoise >= 20 /\ ctx_ambientNoise < 70 -> speakerVolume = 55;
17 constraint ctx_ambientNoise >= 70 -> speakerVolume = 85;
18
19 var 0.0..100.0: aux;
20 constraint maxVelocity <= 100.0
21 -> aux = 1.768/100.0 * maxVelocity;
22 constraint maxVelocity > 100.0 /\ maxVelocity <= 200.0
23 -> aux = 3.444/100.0 * maxVelocity - 1.676;
24 constraint maxVelocity > 200.0 /\ maxVelocity <= 300.0
25 -> aux = 6.708/100.0 * maxVelocity - 8.204;
26 constraint maxVelocity > 300.0 /\ maxVelocity <= 400.0
27 -> aux = 13.07/100.0 * maxVelocity - 27.29;
28 constraint maxVelocity > 400.0 /\ maxVelocity <= 500.0
29 -> aux = 25.44/100.0 * maxVelocity - 76.77;
30 constraint maxVelocity > 500.0 /\ maxVelocity <= 600.0
31 -> aux = 49.57/100.0 * maxVelocity - 197.42;
32 % Solver mode
33 solve minimize priority_performance *
34 ( -1.0*100.0 * (maxVelocity-100.0) / (600.0 - 100.0) ) + priority_energy * aux;

Listing 4. MiniZinc model obtained from the VML model in listing 3

In order to validate our approach in a system of realistic
complexity, we integrated the coffee delivery example into
our Butler scenario (see our YouTube channel2).

At this point we have all the ingredients we need to put
everything into operation, i.e., the VML models that specify
the design-time open variation points and the mechanisms
that allow the robot to bind them at run-time. Therefore
we use a component with a constraint solver that interprets
MiniZinc models. A noteworthy issue is the interaction of the

2http://www.youtube.com/user/roboticsathsulm



constraint solver in our architecture. As input, this compo-
nent needs context information which is typically distributed
in the system on different levels. In SMARTSOFT we use
an event based mechanism to acquire certain information
from skill components. For instance, for both models it is
necessary to get the battery value. Thereto the constraint
solver component directly subscribes to the base component
to be informed if the battery value drops below a certain
threshold. More advanced data acquisition mechanisms (e.g.,
those needed to collect information to deduce the waiting
time in front of a coffee machine) can be implemented based
on a data aggregation approach like in [7]. Finally, some con-
text information is related to the current environment model
of the robot, that is stored and updated in the knowledge base
of the sequencer (see top right in fig. 3). As the sequencer is
always the master in our system it has to provide the relevant
information to the constraint solver. For example the context
variable ctx maxAllowedVelocity in list. 2 is stored in
the knowledge base, because it relates to the current physical
limits of the robot, the current situation, etc.

The next question relates to the triggering of the adap-
tation mechanism. In our system we separate the trigger-
ing (execution) of the constraint solver from its model
implementation. This enables the VML modeller to focus
on adaptation without having to care about the execution
environment. There are two possible situations where the
constraint solver is triggered to calculate new values for
certain variation points. In the first situation the sequencer
queries the constraint solver – providing current context
information in the query request – for a decision to e.g.,
expand the current node in its task-net (see fig. 3 (c)). In this
case the sequencer triggers the calculation in the constraint
solver and waits for the (query) result. In the second situation
a variation point (e.g., the speakerVolume in listing 3)
is sporadically updated on demand each time the constraint
solver receives an event about changes in relevant context
variables. Again, using the event mechanism here con-
siderably reduces communication and calculation overhead
in the system. The speakerVolume variation point can
be directly parametrized in the speech output component,
because it typically has no effect on the sequencer. As
mentioned above, other variation points like the currently
suggested speed reduction must be additionally propagated
to the sequencer in order to guarantee a consistent world
model in the knowledge base.

Figure 4 illustrates the behavior of our robot Kate ac-
cording to the VML model in listing 2. Thereby, our robot
Kate navigates in our home environment and decides, for
each order on demand, which coffee machine to use. For
this purpose, Kate balances between conflicting optimiza-
tion strategies like minimizing resource consumption while
keeping high the task efficiency.

Figure 5 shows the evolution of the variation point
maximum allowed velocity by balancing performance
and energyConsumption according to the current bat-
tery level. While the battery level is higher than 30% the
selected maximum velocity remains at 600 mm/s, since
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Fig. 4. Depending on the current distance between Kate and the coffee
machines, the waiting time at the coffee machines and Kate’s current battery
level, the decision threshold to drive to coffee machine 1 or 2 moves either
towards (a) or (b).
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Fig. 5. Evolution of maximum allowed velocity according to the current
battery level. Results after running the VML Model in listing 3.

performance has priority over energyConsumption.
However, if the battery falls below 30%, energy-
Consumption becomes increasingly important, therefore
the selected maximum velocity decreases exponentially until
reaching the minimum of 100 mm/s.

V. RELATED WORK

A. Variability in Robotics

In the last decade, the robotics community has spent a
lot of efforts to improve the robotics software development
process in order to cope with its inherent and growing com-
plexity and to improve its reusability, interoperability and
maintainability. Many of these efforts have adopted Software
Engineering best practices like those promoted by CBSE and
MDE. As a result, a new set of robotics frameworks and
architecture models, aimed to improve robotics software de-
sign, have been developed, like RT-Component [8], ROS [9],
SMARTSOFT [2], etc.

Although all these approaches are already valuable steps
towards building impressive systems, we believe, that im-
proving only the development process at design-time in isola-
tion is insufficient, and it is rather necessary to take run-time
aspects like situation- and resource-awareness into account
from the very beginning. One step to solve this problem
is done by introducing mechanisms to model robot tasks
independently of the reactive components, e.g., addressed by
SMACH [1] and SMARTTCL [3], [10]. The latter approach
additionally allows to easily model dynamic task trees, that



are rearranged on demand according to current situation and
other parameters like resource consumption or adaptation
suggestions (see sec. III). Thus, one of the results in this
paper is to explicate properties which are necessary to be
expressed at design-time by a developer and which can be
later processed on the robot at run-time.

In a robotic system, variability can be identified on
different levels. State-of-the-art systems focus mostly on
functional variability like in [11] (based on feature models
for components). By contrast, our approach is not limited to
design-time variability. Instead, we introduce a DSL tailored
to express variation points at design-time and their binding
according to non-functional properties at run-time.

DiaSpec [12] is a recently introduced Java based design
language to model robotic systems on the skill layer. In
addition thereto, our approach includes the sequencing layer
and is more focused on variability modeling.

The software community introduced the term architecture-
based adaptation in a series of papers like [13] and [14] for
robotic systems based on CBSE. In there, components are
replaced or migrated at run-time (e.g., due to a failure or
resource insufficiency) by similar components with differ-
ently implemented services. From the robotics perspective
we highly support this progress.

However, in contrast, the focus in our work is more on
the challenge to balance between reduction of complexity
at design-time and at the same time introducing models
to express variability for non-functional properties which
can be efficiently exploited at run-time. Thereby, we use
sophisticated real-world scenarios from service-robotics to
demonstrate the applicability of our approaches in robotic
systems of realistic complexity.

B. Expressing run-time variability in Software Engineering

Numerous research works in software engineering have in-
vestigated how to model the adaptation logic [15]. Therefore,
we can find a wide range of approaches that address, among
others, different representations and formalisms, different
levels of abstraction, different application domains, and dif-
ferent techniques to capture and express adaptation. Regard-
ing approaches using different representation for expressing
adaptation, in the area of software architecture, we can find
Architectural Description Languages (ADL) [16] based on
graphs, process algebras, and other formalisms to describe
desired component configurations and specify how configu-
rations may be changed at run-time in terms of addition and
removal of components. In contrast, in the area of Dynamic
Software Product Lines [17], [18], the system variability
is modelled using variation points defined with a number
of alternatives and constraints among them. Concerning the
level of abstraction, while [17] provides designers with a high
level modeling language to specify the global adaptation of
the system using fuzzy logic and qualified variables (e.g.,
the QoS properties used to decide adaptation are expressed
as enumerators defined with values like HIGH, MEDIUM
or LOW), [19] allows a wide range of data types and utility
functions to specify QoS properties in the components of

the system. Moreover, although most of the approaches are
independent of the application domain, some are focused,
e.g., on the dynamic adaptation of Graphical User Interfaces
using model transformations [20], or in the use of feature
diagrams to describe the functional variability of Smart
Houses [18]. Finally, a number of techniques have been
proposed in the literature to capture and express adaptation
logic. First, most existing approaches are based on using
ECA (event-condition-action) rules [20], [18], [21]. In these
approaches the context and the configurations are related
by a set of rules, which express how the changes of the
system context should affect the running configuration of
the application. ECA rules are clear and easy to write but
fully specifying an adaptive system using ECA rules often
requires defining a large set of rules [17]. In addition, it is
not easy to check whether the full set of rules is consistent
or not at design-time and it might be the case that some rules
conflict with others, in particular when some changes in the
context might trigger several rules. Another common way to
express the adaptation logic is to define goals that the system
should reach [19]. The designer establishes QoS properties
and specifies the impact on them depending on the selected
configuration, e.g., through utility functions. At run-time,
the system should find the best configuration i.e., the one
that optimizes the properties considering the current context.
Goals allow to specify the adaptation logic at a higher level
of abstraction than ECA rules. However, multi-dimensional
optimization algorithms are usually resource and/or time-
consuming. Some approaches, like the one presented in [17],
adopt a combined approach based on the use of both rule-
and optimization-based mechanisms, to try exploiting their
respective advantages while limiting their drawbacks.

Our approach is close to the one presented in [17] but,
in contrast, we do not rely on fuzzy logic to capture and
describe how systems should adapt. Conversely, we offer a
more precise and less limited way to describe variability,
e.g., using mathematical expressions that incorporate any
number of real variables. This provides designers with a more
natural way for describing the variability of their systems, in
particular in some application domains like in robotics.

Our proposal is also close to the one presented in [19],
although it relies on component-based system adaptation
while ours is independent of the system organization (varia-
tion points can be components, algorithms, parameters, etc.).
Therefore, the proposed modeling language can describe
variability at different levels of abstraction. Although we
focus on the robotic domain, all the concepts included in
our approach are application independent like [17], [19] or
[21]. Finally, as in [17], we have considered ECA rules and
optimization of goals, but with some improvements like unit
specification and normalization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we showed how to express variability in
a robotic system for non-functional properties (like safety
or task efficiency), using a first version of a new DSL
called VML. This language enables designers to focus on



modeling the adaptation strategies without having to foresee
and explicitly deal with all the potential situations that
may arise in real-world and open-ended environments. The
variability, purposefully left open by the designers in the
VML models, is then fixed by the robot at run-time according
to its current tasks and context (separation of roles and con-
cerns). Furthermore, we underpinned the applicability of our
approach by integrating it into our overall robotic architecture
and by implementing it in a sophisticated real-world scenario
on our service robot Kate. Thereto the VML models were
translated into a constraint modeling language (MiniZinc),
which is executed in a constraint solver interacting with the
sequencing layer on the robot at run-time.

Considering that a VML model represents a constrained
optimization problem, the question arises why VML is used
instead of a modeling language for constraint programming.
This discussion resembles the traditional dispute between
Domain-Specific Languages (DSLs) and General-Purpose
Languages (GPLs). VML has the well-known advantages of
DSLs (e.g., allowing solutions to be expressed at the level of
abstraction of the problem domain considerably simplifying
the work of the designers) and disadvantages (e.g., cost of
designing, implementing and maintaining a new language)
[22]. However, we highlight that the proposed language is of
value because: (i) it enables designers to clearly express an
important issue, i.e., the run-time variability for optimizing
the execution quality of the system; (ii) it delimits the
concepts and their semantics which facilitates the validation
of the models; (iii) it abstracts some details such as the
normalization of the formulas; and (iv) it can be extended
adding new concepts and capabilities not supported by the
expressiveness of the constraint modeling languages.

As a conclusion, we were able to combine efforts from the
different communities (SE, MDE and Robotics) in order to
apply state-of-the art approaches for variability management
on a robot operating in a home-like environment.

For the future, we plan to extend VML with some addi-
tional syntax constructs and to improve the supporting tools,
in particular the VML model editor, to provide designers with
some advanced model validation and simulation facilities.
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