
Motion Control for Omni-Drive Servicerobots Under
Kinematic, Dynamic and Shape Constraints

Timo Blender
University of Applied Sciences Ulm

Ulm, Germany
Email: blender@hs-ulm.de

Christian Schlegel
University of Applied Sciences Ulm

Ulm, Germany
Email: schlegel@hs-ulm.de

Abstract—In this paper, a fast reactive obstacle avoidance
approach for omnidirectional driving is presented. The method is
based on the dynamic window approach, but uses a cuboid instead
of a window to limit the 3-dimensional search space accordingly
to the dynamic constraints of the robot. Besides the kinematics
and dynamics, the presented approach also considers the shape
of a robot. To cope with the effort of the time consuming distance
calculations, the remaining distance values are precalculated in
an offline part and provided by a lookup table. This procedure
is based on the Curvature Distance Lookup (CDL) approach
which is extensively used in several real world robotic applications
but which was so far only implemented for 2-DOFs. During the
online phase, the extended approach enables the selection of a
motion command from a wide range of curvatures (3-DOFs)
within the current dynamic cuboid. The distance values are
queried from the corresponding lookup table entries depending
on the occupancy grid determined by latest sensor information.
The reduced computational effort of the control loop allows
to consider obstacle information from corresponding sources to
the full extent and without preprocessing. Furthermore, complex
heuristics can be implemented to evaluate a high number of omni-
drive velocity triples in such a way that the driving behavior of
the robot is influenced accordingly.

I. INTRODUCTION

Robust navigation in open-ended environments is one of
the key capabilities of a mobile robot in order to be able to
perform complex tasks. The navigation problem can be solved
in advance by a variety of global path planning methods that
are able to compute a collision-free path to a specific goal
location. However, such procedures are usually only reasonable
in static environments with a-priori knowledge about the obsta-
cle configuration since replanning in dynamic environments is
often too slow. Hence, the contrary, or rather the complement
to these global methods are the local ones which are also re-
ferred to as reactive collision avoidance. They are an essential
component in many robotic systems since appropriate motion
control in dependence of current sensor data is necessary for
a safe navigation in an unknown and dynamic environment. In
the past, comprehensive research in the field of mobile robotics
led to the emergence of many different approaches for obstacle
avoidance. A crucial feature in this domain is the consideration
in what way a particular algorithm involves the three internal
robot constraints - kinematic, dynamic, shape - in the decision-
making process. An algorithm that does not consider kinematic
constraints could provide a motion command which some
robots could not physically execute. Equally unfavorable is

the neglect of dynamic constraints in which case motions
could be commanded that can not be reached by a robot with
certain limited velocity or acceleration capabilities. Taking
only an approximated shape of the robot into account leads
to inaccuracies when calculating the remaining distance to
obstacles. This could either cause a collision or restricts the
maneuverability of the robot.
Despite this importance there are only a few number of
approaches taking into account all three constraints. A major
problem is the shape constraint because high computation
effort is required for the distance calculations, especially when
using a polygonal robot shape. However, the local nature of
obstacle avoidance which runs in continuous cycles benefits
from a procedure that determines an appropriate solution as
fast as possible. The Curvature Distance Lookup Approach
(CDL) [1] is based on the Dynamic Window Approach (DWA)
[2] and is one of the rare approaches considering all three
constraints. The CDL approach shifts the distance calculations
to an offline part to reduce the effort within the control loop
significantly. In contrast to DWA, the distance calculations can
be performed with a polygonal shape because time is not a
critical measure anymore.
The CDL approach was so far successfully implemented for
kinematics with two degrees of freedom like differential-drive,
synchro-drive or a tricycle kinematic [3]. This approach is
extensively used in several real world robotic applications
e.g. Collaborative Robot Butler Scenario, Intralogistics or
RoboCup@Home [4]. This paper extends the CDL approach
by adding a third degree of freedom in order to support omni-
drive kinematics. This search space extension increases the
agility of the robot significantly. The additional motions can
be useful for different application scenarios e.g. docking or
social navigation. In the first one, omni-drive motions can
simplify approaching a goal location. In the second one, a
lateral motion can be useful to express the robot intention
(e.g. approaching the side of a hallway before traversing it).
In general, the huge amount of possible movements allows
to drive more sophisticated in situations where robots with 2-
DOF kinematics would need to rotate in place to continue.
The paper is organized as follows: Section II gives an overview
about established obstacle avoidance methods with different
levels of constraints considerations. Section III and IV provides
the functionality of the dynamic window approach and the
CDL approach for 2-DOFs. These are the necessary basics for
the omni-drive extension of the CDL approach which is pre-
sented in section V. Finally, in section VI, two experiments are
presented showing the benefits of the new motion capabilities

978-1-4673-7929-8/15/$31.00 c© 2015 IEEE

gained by the here proposed CDL omni-drive extension.

II. RELATED WORK

The vector field histogram (VFH) [5], the potential field
method (PFM) [6] and the Nearness Diagram (ND) [7] con-
sider none of the three constraints. VFH uses an obstacle
history in form of a certainty grid located in the near envi-
ronment around the robot to compensate sensor uncertainty. A
histogram provides probability values for the existence of an
obstacle in a corresponding direction. Finally, a cost function
is applied for every free area in order to determine the best
steering direction with regard to certain properties, e.g. goal
alignment. ND divides the environment of the robot in different
sections and uses two diagrams to describe the obstacle con-
figuration. These diagrams can be used to determine a safety
level which defines one of five possible states that express the
goal and obstacle configuration. Finally, a solution section can
be computed based on the determined state. The authors show
that their approach can cope with situations that constitute a
problem for other local obstacle avoidance approaches. PFM
considers a robot as a particle which is influenced by artificial
forces from a potential field. The obstacles correspond to
repulsive forces and the goal point constitutes the force of
attraction. The application of a mathematical function will
direct the robot to the goal while circumventing the obstacles.
The potential field method treats the robot as a point with
omnidirectional motion capabilities. Without further extensions
none of the internal robot constraints are taken into account.
The VFH+ [8] extension takes into account the kinematic of
a robot in a simplified form by prohibiting all trajectories in
form of circular arcs and straight lines that would cause a
collision with an obstacle. A further approach that takes into
account kinematic constraints is the steering angle field [9]
method. It was tested with a rectangular robot and excludes
all steering angles which cause collisions when using a non-
holonomic kinematic. However arbitrary robot shapes are not
possible and robot dynamics is not considered.
Approaches acting in the velocity space like the curvature
velocity method [10] and its extension, the lane curvature
method [11], consider the kinematics and dynamics of the
robot. However, just like in the dynamic window approach,
the robot shape is approximated by a circle.
A method that takes into account all three constraints is
provided by Arras et al. [12]. They apply the dynamic window
approach but restrict the search space by a dynamic line instead
of a dynamic window. This step reduces the processing effort
in such a way that polygonal robots can be applied. Minguez
et al. [13] provides an extension in form of an abstraction layer
wrapping the potential field method. The abstraction layer is
responsible for the consideration of the three constraints. Their
concept is generic which means that the abstraction layer can
be used in combination with any other collision avoidance
method that is designed for non-holonomic robots and which
does not consider the robot constraints. First, the approach
creates an arc reachable manifold that represents the obstacle
configuration under consideration of the robot shape depending
on trajectories assumed as circular paths. Based on the robots
dynamics, non-admissible and reachable configurations can be
determined when knowing the collision configurations from the
arc reachable manifold. Finally, the manifold is transformed to
a representation free of kinematic constraints where the robot

is represented as a point. Now the potential field method can be
applied to determine a motion command. The closest command
which is reachable and admissible based on the computations
from the abstraction layer is finally selected. The authors claim
that their approach is faster than a number of other methods
and in contrast to CDL, the obstacle space is not discretized.
However, the procedure is restricted to non-holonomic robots.
Hence, an extension of the CDL approach for omni-drives will
provide a higher maneuverability while the accuracy of the
computed solution is still appropriate.

III. THE DYNAMIC WINDOW APPROACH

The dynamic window approach [2] is a local reactive
approach for collision avoidance under consideration of the
dynamics and kinematics of a robot. The approach proceeds
in the two-dimensional velocity space composed of the transla-
tional velocity v and the rotational velocity ω. The evaluation
of various {v, ω} combinations (named as curvatures) within
a control loop enables the determination of an appropriate
velocity value for the next time step. Using a dynamic window
allows to take the dynamics of the robot into account, thereby
restricting the search space to those {v, ω} combinations which
can be reached within the next time step. Further, a curvature
c = {v, ω} is only admissible if the robot can come to a
stop before a collision occurs. All reachable and admissible
velocity combinations are finally evaluated by an objective
function with respect to three properties: speed, distance, and
orientation to a goal point. As already noted, the main draw-
back of the dynamic window approach is the approximation
of the robot shape by a circle in order to reduce the required
time for the distance calculations within the control loop. The
computational effort for a polygonal robot would increase to
O(n3) because the calculations must be performed for each
segment [3].

IV. THE CURVATURE DISTANCE LOOKUP APPROACH

The CDL approach [1] represents an extension of the
dynamic window approach. The main characteristic of the
CDL approach is the usage of a lookup table to provide the
remaining distance values for each curvature to the correspond-
ing obstacle cells. These distance values are precalculated in
an offline part and provided in a lookup table to avoid the
time consuming distance calculations within the control loop
(online part). This enables the usage of a polygonal robot shape
because the offline part has no time critical requirements. The
crucial foundation for the applicability of the CDL approach
is the fact that the discretized {v, ω} combinations can be
mapped to a limited number of curvatures. In other words, dif-
ferent {v, ω} tuples can be represented by the same curvature.
This ensures that the size of the lookup table remains within
reasonable limits. The distance calculations are performed
in the local coordinate system of the robot. Therefore, the
distance values are always independent from the position of
the robot in the global coordinate system. Only grid cells in a
certain vicinity to the robot (cartesian space) are considered.
The environment can be evaluated by any source that provides
information about occupied cells in a grid map (e.g. a laser
scanner). During the online part, the distance to the closest
obstacle cell for a curvature can be easily determined by
applying a minimum operation over the corresponding lookup
table entries.

A. Offline Part

1) Curvature indices: The curvature indices are the set of
representative curvatures for which the distance calculation is
applied in combination with the cells of the cartesian space.
The curvature index ic indicates the corresponding lookup
table entry providing the distance value for curvature c to the
obstacle cell O(x, y), addressed by the corresponding index
values ix and iy . A limited number of curvature indices is given
by the outer cells of the discretized velocity space (Figure 1).
Hence, the number of curvature indices is (2 ·nv)+(2 ·nω)−4
instead of nv ·nω where nv and nω refer to the total number of
discretized translational and rotational values. The representa-
tive value for a curvature index is given by its curvature line
which can be described by the atan2(v, ω) function. An inner
cell is associated with a curvature index whose curvature line
constitutes the minimal deviation to the own curvature line of
that inner cell.

+ v

+ ω

0

0

- v

- ω

Curvature line

Fig. 1. The discretization window of the velocity space. The outer cells are
used as curvature indices.

2) Lookup tables:

• Tindex[iv, iω] ⇒ ic: Contains the curvature index ic
for a {v, ω} tuple, addressed by the index values iv
and iω .

• Tdist[ix, iy, ic]⇒ (d, φ): Contains the distance d and
the angular distance φ for the curvature index ic to the
obstacle cell O(x, y), addressed by the index values
ix and iy . The distance d and the angular distance φ
are stored separately in this lookup table.

• Tacc,v[ic] ⇒ av: Contains the maximum translational
acceleration av for the curvature index ic.

• Tacc,ω[ic] ⇒ aω: Contains the maximum rotational
acceleration aω for the curvature index ic.

3) Distance calculation: When considering the robot with
its center in the origin point of the cartesian space, the
Instantaneous Center of Curvature (ICC) is located on the
horizontal axis with the distance r given by the ratio v/ω
of an arbitrary {v, w} tuple. To check whether a curvature c
overlaps a cartesian cell o under consideration of the robot
contour, a circle k with center point ICC(c) intersecting the
cell o is defined. If k intersects a robot segment in a point p,
then o is located on the curvature c and the remaining distance

...

...ic

Tacc,v

Tdist

ic

ix

iy

Tindex

iv

iω

ic ...

...

Tacc,ω

Fig. 2. The lookup tables of the CDL approach.

must be determined by initially calculating the angular distance
α between p and o. The remaining distance is finally given
by calculating α · r(k) where r(k) is the radius of circle k
intersecting the robot contour.

r(c)

d

α

ICC(c)

p

o

k

c

Fig. 3. The circle k intersects the robot shape. Hence, the remaining arc
distance d between p and o must be calculated for a non-straight motion.

B. Online Part

The online part of the CDL approach follows the dynamic
window approach but without the need to compute the remain-
ing distance to obstacles. Instead, the values are queried from
the corresponding lookup table entries. The following steps are
performed during the control loop of the CDL approach:

1) Definition of the dynamic window.
2) Extraction of the relevant curvatures from the dy-

namic window.
3) Evaluation of the sensor readings and appropriate

distance lookup for every occupied cell in combina-
tion with the curvatures extracted from the dynamic
window.

4) Minimum distance determination for every curvature
based on the information from the previous step.

5) Evaluation of all velocity combinations from the
dynamic window which are admissible.

6) Commanding of the highest rated velocity combina-
tion.

V. OMNI-DRIVE EXTENSION

This section provides the necessary steps to extend the
standard CDL approach to omni-drives. The new considera-
tions affect mainly the offline part because the lookup table
organization must be adapted in such a way that the distance
values of the additional omni-drive specific motion types are
included. Hence, it is necessary to determine how to compute
the distance values of these new types and how to find a
set of representative curvature indices. The problem of the
curvature representation expands from two dimensions to three
dimensions according to the number of degrees of freedom.

A. Offline Part

1) Motion types: Table I shows all motion types with 3-
DOFs when considering all active (6= 0) and not-active (= 0)
combinations of the velocity triple {vx, vy, ω}. Hence, there
are 23 combinations. The possible motion types with 2-DOFs
are included in table I (Nr. 1, 2, 3, 6) which means that the
2-DOF motions are a subset of the 3-DOF motions.

TABLE I. THE MOTION TYPES WITH 3-DOFS.

Nr. vx vy ω General Description

1 = 0 = 0 = 0 (vx ∧ vy ∧ ω) = 0 No motion

2 = 0 = 0 6= 0 (vx ∧ vy) = 0 ∧ ω 6= 0 Rotation in place

3 6= 0 = 0 = 0

(vx ∨ vy) 6= 0 ∧ ω = 0 Linear motion4 = 0 6= 0 = 0

5 6= 0 6= 0 = 0

6 6= 0 = 0 6= 0

(vx ∨ vy) 6= 0 ∧ ω 6= 0 Circular motion7 = 0 6= 0 6= 0

8 6= 0 6= 0 6= 0

The distance values of the additional motion types must
be covered by the new lookup table. Considering figure 3,
the necessary information to perform the distance calculation
for a corresponding curvature to a specific obstacle cell is the
ICC location. For 2-DOF motions, the ICC location is fixed
on the horizontal axis. Hence, the radius is the only measure
to determine the exact location. This is not the case for 3-
DOFs as can be seen in figure 4. Motion type 7 from table
I is the reverse case to the classic non-straight motions with
2-DOFs (Nr. 6). Now, instead of the horizontal axis, the ICC
location is fixed on the vertical axis depending on the radius
of a curvature. For the all active case (Nr. 8), the ICC moves
between the horizontal and vertical axis. In general, the ICC
of a velocity triple is given by two measures:

• Radius circle: A circle with center point (0,0) and
radius r given by equation 1.

• ICC-line: A line starting at point (0,0) with a slope
depending on the ratio of the two translational veloc-
ities vx and vy .

The intersection of the radius circle and the ICC-line
determines the ICC location of a corresponding velocity triple.

For 3-DOFs, the radius also depends on the ratio between
the translational and the rotational velocity. However, the
translational component is now considered as a vector ~V
composed of vx and vy . The ratio between the magnitude of
the vector ~V and the rotational velocity ω determines the radius
of a curvature (equation 1).

6 6

7

7

...

8

x

y
Δx

Δy

... ...

Radius circle

ICC-line

Fig. 4. The ICC locations of circular motions with 3-DOFs. The radius circle
and the ICC-line are the two relevant measures. For motion type 6, the ICC-
line value is located on the horizontal axis. For motion type 7, it is located
on the vertical axis. The ICC-lines of motion type 8 lie somewhere between
these axis depending on the vx/vy ratio.

r(vx, vy, ω) =
|~V |
ω

=

√
v2
x + v2

y

ω
(1)

When knowing the radius, the x and y coordinates of the
ICC are finally given by equation 2 and 3.

ICCx(vx, vy, ω) = r(vx, vy, ω) · sin(atan2(vy, vx)) (2)
ICCy(vx, vy, ω) = r(vx, vy, ω) · cos(atan2(vy, vx)) (3)

2) Curvature indices: As already noted, the general idea
of a curvature index is the representation of a set of velocity
triples that summarizes the distance calculations to the obstacle
cells of the cartesian space. This implies that the ICC locations
of the triples must be as close as possible to the ICC location
of the representative curvature index. In the case of 3-DOFs,
velocity triples with a similar radius circle and a similar ICC-
line should be grouped together. Finally a curvature index
with the same properties should be assigned to each triple of
this group. Figure 6 shows the distribution of ICC locations
on different radius circles for a specific discretization. The
velocity triples of the discretized search space got assigned a
curvature index describing the radius circle next to their own.
The set of curvature indices were derived by using the outer
cells of the discretized velocity space given by |~V | and ω. As
a result, the number of ICC locations on each radius circle is
quite high and the locations are dense distributed. This implies
that a large number of curvature indices is necessary to cover
all velocity triples sufficient enough. Hence, the total number
of indices is given by a combination of indices defining the
radius circles and indices defining the ICC-lines. As already
noted, the first one uses the set of outer cells Wr given by the
window contrasting |~V | and ω. The second one uses the set of
outer cells Wl given by the window contrasting vx and vy . The
total number of curvature indices is then given by |Wr| · |Wl|.

vx

|V|

+ ω

+ vy

+ vx

Radius circle

ICC-line

- vy

- vx
0

00

0- ω

...

Wr = set of outer cells

Wl

Rotation in place Rotation in place

Linear motion}} }
}

Circular motion Circular motion
clockwise counterclockwise

clockwise counterclockwise

ICC location
= set of outer cells

Fig. 5. The combination of the outer cells from both discretization windows
serve as the curvature indices.

Fig. 6. The distribution of ICC locations on different radius circles.

3) Lookup table organization: The following lookup tables
are used for the omni-drive extension:

• Tindex,r[iv,x, iv,y, iω] ⇒ ir : Provides the curvature
index ir for a {vx, vy, ω} combination, addressed by
the index values iv,x, iv,y and iω .

• Tindex,l[iv,x, iv,y, iω] ⇒ il : Provides the curvature
index il for a {vx, vy, ω} combination, addressed by
the index values iv,x, iv,y and iω .

• Tdist[ix, iy, ir, il]⇒ d(ir, il) : Provides the remaining
distance value d for the curvature index tuple {ir, il}
to obstacle cell O(x, y), addressed by the index values
ix and iy .

B. Online Part

1) Search space restriction: The additional velocity com-
ponent vy expands the search space from two-dimensions
to three. As a result, the classical two-dimensional dynamic
window expands to a three-dimensional dynamic cuboid. The
restrictions of the three velocity components depend on the
current velocity (v̇x, v̇y , ω̇), the maximum acceleration (âv,x,
âv,y , âω) and the time interval ∆t (equation 4-6).

...

...

Tindex,r iv,y

iω

iv,y
Tindex,l

ix

iy

ir

il

Tdist

iv,x

iv,x

iω

Fig. 7. The distance lookup table and the curvature index association tables
of the CDL omni-drive extension.

DCx = {vx | v̇x − âv,x ·∆t ≤ vx ≤ v̇x + âv,x ·∆t} (4)
DCy = {vy | v̇y − âv,y ·∆t ≤ vy ≤ v̇y + âv,y ·∆t} (5)
DCω = {ω | ω̇ − âω ·∆t ≤ ω ≤ ω̇ + âω ·∆t} (6)

2) Minimum distance determination: The minimum dis-
tance must be determined for each velocity triple {vx, vy, ω} ∈
DC. Each triple is represented by a curvature index tuple
{ir, il}. Now it is necessary to determine the minimum dis-
tance for each {ir, il} ∈ DC. The associations between a ve-
locity triple and the curvature indices ir and il are made by the
lookup tables Tindex,r and Tindex,l. If an appropriate source
provides the necessary obstacle information in a grid map, the
minimum distance can be determined under consideration of
all occupied obstacle cells in the cartesian space ξ (equation
7).

d(ir, il) = min
∀{ix,iy}∈ξ

Tdist [ix, iy, ir, il] (7)

3) Lookup for checking admissibility and evaluation: To
determine whether a velocity triple is admissible, the informa-
tion about the remaining distance and the maximum braking
acceleration on a corresponding curvature must be known in
order to get the value for the remaining braking distance.
The minimum distance value is provided by d(ir, il) and the
acceleration value by Tacc,V respectively Tacc,ω . Checking this
condition for the corresponding curvature of a velocity triple
allows to determine the admissibility of this combination. If
the velocity triple is admissible, it represents a potential motion
command for the next time step and it can be finally evaluated
by an objective function to determine the benefit of the
resulting maneuver. Different heuristics can be implemented
to rank the velocity triples in such a way that a desired driving
behavior is achieved. The experiment section provides two
example heuristics for two different scenarios.

C. Resource Consumption (Offline Part)

This section gives an overview about the resource con-
sumption of the omni-drive extension which is highly depen-
dent on the number of used curvature indices. Equation 8

Dynamic cuboid

Tindex,r

Tindex,l

Curvature index
association

...

...

...

Provides

ir

il

ix

iy

Occupied cells

...

...

Minimum

il

ir

DCx

DCy

DCω

d(ir,il)

Tdist

iv,y

iω

iv,x

iω

iv,x
iv,y ir,il

distance

}
Fig. 8. Online part of the CDL extension: Step 1 - Determine minimum
distance.

...ir

If admissible

...

il

ir

Evaluation

Curvature index
association

Provides

Tacc,V
...

Tindex,l

iv,y

iω

iv,x

iω

iv,x
iv,y

d(ir,il)

...ir

Tacc,ω

}
Dynamic cuboid

DCx

DCy

DCω

Tindex,r

Fig. 9. Online part of the CDL extension: Step 2 - Lookup for checking
admissibility and evaluation.

and 9 show the number of resulting curvature indices when
using the outer cells of the discretization windows given by the
example configuration from table IV. Based on these values,
equation 10 determines the size of the lookup table depending
on the number of cells in the cartesian space (nx · ny) which
is given by the ratio of the cartesian space size and the
cell discretization. To give an impression, table II shows the
resource consumption of the offline part depending on the
number of used curvature indices and the number of cells in the
cartesian space. The time values were obtained with an Intel
Core i7-3610QM processor and the distance values were stored
as shorts (2 bytes). It can be seen that using the full number of
outer cells as curvature indices results in a very large lookup
table size (first two rows). However, a reduction of the ICC-line
indices by at least half (last two rows) seems to be reasonable,
since the resulting deviations of the computed distance values
can be neglected. Note that this would correspond to κ = 2
for the ICC-line indices when considering equation 9. Hence
κ is denoted as accuracy reduction factor if we want to keep
the current velocity discretization but reduce the lookup table

size at the expense of the accuracy in the computed distance
values. Also note that the size of the lookup table is doubled
because the arc distance and the angular distance are always
stored separately. This could be optimized by only storing the
angular distance values and computing the arc distance values
online. In this case the lookup table size would be only half
as large as given in table II.

A further possibility to reduce the lookup table size sig-
nificantly is to provide only partial coverage and to compute
no distance values for motion type 8 where (vx ∧ vy ∧ω) 6= 0
applies. Table III shows the resource consumption for two
different numbers of obstacle cells with only such a limited
coverage. It is obvious that this corresponds to a strong
reduction of the memory consumption. However, in this case
the search space is not a real cuboid and the commanding
of a motion combination where (vx ∧ vy ∧ ω) 6= 0 applies
must be generally prohibited during the online phase which
restricts the maneuverability of the robot. Note that for this
partial coverage, |Wr| is given by (2v−1

s v̂) + (2v−1
s |v̌|) +

(2ω−1
s ω̂) + (2ω−1

s |ω̌|) when we assume that v̂ = v̂x = v̂y
and v̌ = v̌x = v̌y .

|Wr| =

κ−1

2 ·

√
v̂x

2 + v̂y
2

vs

+ 2 · ω̂
ωs

+ 1

 (8)

|Wl| =
⌈
κ−1

(
2 · v̂x

vs
+ 2 · |v̌x|

vs
+ 2 · v̂y

vs
+ 2 · |v̌y|

vs

)⌉
(9)

S = |Wr| · |Wl| ·
sx
sc
· sy
sc
· sizeof(datatype) · 2 (10)

TABLE II. RESOURCE CONSUMPTION OF THE OFFLINE PART FOR THE
EXAMPLE CONFIGURATION GIVEN IN TABLE IV.

|Wr| · |Wl| nx · ny Time (sec.) Size (MB)

423 · 800 61 · 101 1 668.06 7 953.2
423 · 800 101 · 101 2 740.39 13 168.41
423 · 400 61 · 101 857.85 3 976.6
423 · 400 101 · 101 1 462.85 6 584.2

TABLE III. RESOURCE CONSUMPTION OF THE OFFLINE PART WITH
PARTIAL COVERAGE.

|Wr|+ |Wr|+ |Wl| nx · ny Time (sec.) Size (MB)

680 + 680 + 800 61 · 101 11.46 41.36
680 + 680 + 800 101 · 101 18.86 68.49

TABLE IV. EXAMPLE CONFIGURATION.

Name Value Meaning

v̌x, v̂x -1000 mm/s, +1000 mm/s Min/max x-trans. vel.
v̌y, v̂y -1000 mm/s, +1000 mm/s Min/max y-trans. vel.
ω̌, ω̂ -70 deg/s, +70 deg/s Min/max rot. vel.
vs, ωs 10 mm, 1 deg Trans./rot. discretization
sx, sy 5050 mm (3050 mm), 5050 mm Cartesian space (cs) size
sc 50 mm Discretization of cs
nx, ny 101 (61), 101 Nr. cells in cs
âv,x, âv,y 400 mm/s2, 400 mm/s2 Max trans. acceleration
âω 30 deg/s2 Max rot. acceleration
∆t 0.7 s Time interval

(a) (b)

(c) (d)

Fig. 10. A reactive scenario: (a)-(c) The robot traverses the room with classic 2-DOF motions (vx, ω). (d) The robot avoids the suddenly appearing obstacle
by a lateral movement. Such a motion is commanded if avoiding by a non-straight 2-DOF motion is no longer possible due to limited rotational dynamics.

(a) (b)

(c) (d)

Fig. 11. A docking scenario: (a) The robot approaches the goal by arbitrary motions. (b) The robot has reached the docking area and should now rotate until
the desired docking orientation is reached (indicated by the white arrow). (c) Desired docking orientation reached. (d) The robot approaches the goal by lateral
motions.

VI. EXPERIMENTS

The experiments were tested in real world and in simulation
with the Robotino R© 3 platform. Both partial coverage and
full coverage lookup table versions were tested. Note, that
the online performance does not depend on the number of
used curvature indices but on the size of the velocity search
space, the size of the cartesian space and the current obstacle
density. The execution cycles of the CDL omnidrive extension

running on the Robotino R© 3 platform were fast enough to drive
appropriate in the real world scenarios with the configuration
given in table IV. In a simulation environment, when the
motion execution runs on one core of an Intel Core i7-
3610QM processor, the CPU utilization differs from below
10% (dynamic window) to 40% - 70% (dynamic cuboid)
depending on the current environment. Note, that the used laser
scanner provides an opening angle of 240 degrees. When using

a second laser scanner to achieve a view of 360 degrees, the
execution cycle times will increase.

A. Reactive Scenario

Figure 10 shows a reactive heuristic without a given goal
location. In order to keep it simple, classic 2-DOF motions
where vy = 0 applies are generally preferred and get a special
bonus. From this set, linear motions with high velocities
and curvatures with a large remaining distance are preferred.
Equation 11 - 13 show the corresponding evaluation scheme
for a {vx, vy, ω} triple which is represented by the curvature
index tuple {ir, il}. Note that ρ, σ and τ are normalization
constants.

Vheading = 1− (ρ−1|0− ω|) (11)
Vspeed = 1− (σ−1(v̂ − (v2

x + v2
y)0.5)) (12)

Vdistance = τ−1d(ir, il) (13)

The resulting driving behavior is shown in figure 10. Since
2-DOF motions are preferred, there is no need for the robot
to make lateral motions at first. Hence, the room is traversed
with linear motions along the wall until the remaining forward
distance becomes small enough such that a curvature with a
corresponding rotational value gets the preference in order to
approach the next wall perpendicular to the current. However,
in cases where no appropriate rotational velocity value can be
selected, a lateral motion can help to prevent the robot from
rotating in place. This situation can occur if a dynamic obstacle
appears suddenly in front of the robot as shown in figure 10(c).

B. Docking Scenario

A simple algorithm for a docking scenario is formulated
as follows:

1) A free region within a certain threshold around the
final goal position (docking area) must be reached.
In this step all movement types are allowed.

2) If the docking area is reached, the robot should rotate
until a desired heading is achieved that is necessary to
approach the goal with the correct orientation using
linear motions.

3) If the desired heading is reached, the docking phase
is applied. There, the robot approaches the final goal
using only linear motions.

Figure 11 illustrates the robot behavior for such a proce-
dure. Note that the overall navigation architecture [3] uses a
path planner that generates intermediate waypoints depending
on a given goal location and based on a-priori informations
about the environment. The waypoints are finally approached
by the objective function of the local obstacle avoidance
method.

VII. CONCLUSION

An extension of the dynamic window approach to three
dimensions (dynamic cuboid) was provided in this paper. The
additional dimension allows the robot to drive omnidirectional
(3-DOFs) through an unknown and dynamic environment.

In addition to kinematic and dynamic considerations, the
presented approach also considers the shape of the robot by
using precalculated lookup tables providing the distance values
for each curvature to each obstacle cell of the cartesian space.
This procedure corresponds to an extension of the classical
CDL approach for 2-DOFs which was so far extensively used
in several real world robotic applications. Hence, the new
omni-drive support extends this proven method by providing
a significantly higher maneuverability. However, if available
memory resources are very limited, an optimal trade-off con-
figuration between maneuverability and memory consumption
must be found. Note that an implementation of the CDL omni-
drive extension can be found in our repository [14].
Future work deals with further optimization of the lookup
table size and with an implementation of more powerful
heuristics for complex scenarios taking into account the benefit
of omnidirectional motions.
Acknowledgment: The research work presented in this paper
is partially supported by the EU FP7 grant ECHORD++
MARS No. 601116.

REFERENCES

[1] C. Schlegel, “Fast local obstacle avoidance under kinematic and dy-
namic constraints for a mobile robot,” in Int. Conf. on Intelligent Robots
and Systems (IROS), vol. 1, Victoria, Canada, 1998, pp. 594–599.

[2] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance.” IEEE Robotics and Automation, vol. 4, no. 1,
1997.

[3] C. Schlegel, “Navigation and execution for mobile robots in dynamic
environments: An integrated approach,” dissertation, Universität
Ulm, 2004. [Online]. Available: http://www.hs-ulm.de/users/cschlege/
downloads/phd-thesis-schlegel.pdf

[4] Service Robotics Ulm, “Youtube channel,”
http://youtube.com/user/RoboticsAtHsUlm.

[5] J. Borenstein, Y. Koren, and S. Member, “The vector field histogram
- fast obstacle avoidance for mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 7, pp. 278–288, 1991.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. Journal of Robotics Research, vol. 5, no. 1, pp. 90–98,
1986.

[7] J. Minguez and L. Montano, “Nearness diagram navigation (nd): A
new real time collision avoidance approach,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2000, pp.
2094–2100.

[8] I. Ulrich and J. Borenstein, “Vfh+: Reliable obstacle avoidance for fast
mobile robots,” in Proc. IEEE International Conference on Robotics
and Automation, 1998.

[9] W. Feiten, R. Bauer, and G. Lawitzky, “Robust obstacle avoidance
in unknown and cramped environments,” in Proc. IEEE International
Conference on Robotics and Automation, 1994, pp. 2412–2417.

[10] R. Simmons, “The curvature-velocity method for local obstacle avoid-
ance,” in Proc. of the IEEE International Conference on Robotics and
Automation, 1996, pp. 3375–3382.

[11] N. Y. Ko and R. Simmons, “The lane-curvature method for local
obstacle avoidance,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), vol. 3, 1998, pp. 1615–1621.

[12] K. O. Arras, J. Persson, N. Tomatis, and R. Siegwart, “Real-time obsta-
cle avoidance for polygonal robots with a reduced dynamic window.”
in Proc. IEEE International Conference on Robotics and Automation,
2002, pp. 3050–3055.

[13] J. Minguez and L. Montano, “Extending collision avoidance methods
to consider the vehicle shape, the kinematics, and dynamics of a mobile
robot,” IEEE Transaction on Robotics, vol. 25(2), pp. 367–381, 2009.

[14] Service Robotics Ulm, “Website,” http://www.servicerobotik-ulm.de.

